Mean airway pressure
In probability theory, a nearly completely decomposable (NCD) Markov chain is a Markov chain where the state-space can be partitioned in such a way that movement within a partition occurs much more frequently that movement between partitions.[1] Particularly efficient algorithms exist to compute the stationary distribution of Markov chains with this property.[2]
Definition
Ando and Fisher define a completely decomposable matrix as one where "an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and zeros everywhere else." A nearly completely decomposable matrix is one where an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and small nonzeros everywhere else.[3][4]
Example
A Markov chain with transition matrix
is nearly completely decomposable if ε is small (say 0.1).[5]
Stationary distribution algorithms
Special-purpose iterative algorithms have been designed for NCD Markov chains[2] though the multi–level algorithm, a general purpose algorithm,[6] has been shown experimentally to be competitive and in some cases significantly faster.[7]
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- ↑ Template:Cite jstor
- ↑ 2.0 2.1 Template:Cite doi
- ↑ Template:Cite doi
- ↑ Template:Cite jstor
- ↑ Example 1.1 from 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ Template:Cite doi
- ↑ Template:Cite techreport