Arylacetonitrilase

From formulasearchengine
Revision as of 17:24, 28 June 2010 by en>Citation bot 1 (Citations: [Pu168] added: issue. You can use this bot yourself! Report bugs here.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics — specifically, in functional analysis — a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree.

Definition

If (X, Σ) is a measurable space and B is a Banach space over a field K (usually the real numbers R or complex numbers C), then f : X → B is said to be weakly measurable if, for every continuous linear functional g : B → K, the function

gf:XK:xg(f(x))

is a measurable function with respect to Σ and the usual Borel σ-algebra on K.

Properties

The relationship between measurability and weak measurability is given by the following result, known as Pettis' theorem or Pettis measurability theorem.

A function f is said to be almost surely separably valued (or essentially separably valued) if there exists a subset N ⊆ X with μ(N) = 0 such that f(X \ N) ⊆ B is separable.

Theorem (Pettis). A function f : X → B defined on a measure space (X, Σ, μ) and taking values in a Banach space B is (strongly) measurable (with respect to Σ and the Borel σ-algebra on B) if and only if it is both weakly measurable and almost surely separably valued.

In the case that B is separable, since any subset of a separable Banach space is itself separable, one can take N above to be empty, and it follows that the notions of weak and strong measurability agree when B is separable.

See also

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534.