Moving target indication
Template:No sources In differential geometry, the sharp map is the mapping that converts coordinate 1-forms into corresponding coordinate basis vectors.
Definition
Let be a manifold and denote the space of all sections of its tangent bundle. Fix a nondegenerate (0,2)-tensor field , i.e., a metric tensor or a symplectic form. The definition
yields a linear map sometimes called the flat map
which is an isomorphism, since is non-degenerate. Its inverse
is called the sharp map.