SND Experiment

From formulasearchengine
Revision as of 09:29, 13 April 2013 by en>Yobot (See also: WP:CHECKWIKI error fixes using AWB (9075))
Jump to navigation Jump to search

Template:Third-party

In probability and statistics, the generalized integer gamma distribution (GIG) is the distribution of the sum of independent gamma distributed random variables, all with integer shape parameters and different rate parameters. This is a special case of the generalized chi-squared distribution. A related concept is the generalized near-integer gamma distribution (GNIG).

Definition

The random variable X has a gamma distribution with shape parameter r and rate parameter λ if its probability density function is

fX(x)=λrΓ(r)eλxxr1(x>0;λ,r>0)

and this fact is denoted by XΓ(r,λ).

Let XjΓ(rj,λj), where (j=1,,p), be p independent random variables, with all rj being positive integers and all λj different. In other words, each variable has the Erlang distribution with different shape parameters. The uniqueness of each shape parameter comes without loss of generality, because any case where some of the λj are equal would be treated by first adding the corresponding variables: this sum would have a gamma distribution with the same rate parameter and a shape parameter which is equal to the sum of the shape parameters in the original distributions.

Then the random variable Y defined by

Y=j=1pXj

has a GIG (generalized integer gamma) distribution of depth p with shape parameters rj and rate parameters λj (j=1,,p). This fact is denoted by

YGIG(rj,λj;p).

It is also a special case of the generalized chi-squared distribution.

Properties

The probability density function and the cumulative distribution function of Y are respectively given by[1][2][3]

fYGIG(y|r1,,rp;λ1,,λp)=Kj=1pPj(y)eλjy,(y>0)

and

FYGIG(y|r1,,rj;λ1,,λp)=1Kj=1pPj*(y)eλjy,(y>0)

where

K=j=1pλjrj,Pj(y)=k=1rjcj,kyk1

and

Pj*(y)=k=1rjcj,k(k1)!i=0k1yii!λjki

with Template:NumBlk and Template:NumBlk where Template:NumBlk

Alternative expressions are available in the literature on generalized chi-squared distribution, which is a field wherecomputer algorithms have been available for some years.

Generalization

The GNIG (generalized near-integer gamma) distribution of depth p+1 is the distribution of the random variable[4]

Z=Y1+Y2,

where Y1GIG(rj,λj;p) and Y2Γ(r,λ) are two independent random variables, where r is a positive non-integer real and where λλj (j=1,,p).

Properties

The probability density function of Z is given by

fZGNIG(z|r1,,rp,r;λ1,,λp,λ)=Kλrj=1peλjzk=1rj{cj,kΓ(k)Γ(k+r)zk+r11F1(r,k+r,(λλj)z)},(z>0)

and the cumulative distribution function is given by

FZGNIG(z|r1,,rp,r;λ1,,λp,λ)=λrzrΓ(r+1)1F1(r,r+1,λz)Kλrj=1peλjzk=1rjcj,k*i=0k1zr+iλjiΓ(r+1+i)1F1(r,r+1+i,(λλj)z)(z>0)

where

cj,k*=cj,kλjkΓ(k)

with cj,k given by (Template:EquationNote)-(Template:EquationNote) above. In the above expressions 1F1(a,b;z) is the Kummer confluent hypergeometric function. This function has usually very good convergence properties and is nowadays easily handled by a number of software packages.

Applications

The GIG and GNIG distributions are the basis for the exact and near-exact distributions of a large number of likelihood ratio test statistics and related statistics used in multivariate analysis. More precisely, this application is usually for the exact and near-exact distributions of the negative logarithm of such statistics. If necessary, it is then easy, through a simple transformation, to obtain the corresponding exact or near-exact distributions for the corresponding likelihood ratio test statistics themselves. [4][5][6]

The GIG distribution is also the basis for a number of wrapped distributions in the wrapped gamma family. [7]

As being a special case of the generalized chi-squared distribution, there are many other applications; for example, in renewal theory[1] and in multi-antenna wireless communications.[8]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro. 55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios

  1. 1.0 1.1 Amari S.V. and Misra R.B. (1997). Closed-From Expressions for Distribution of Sum of Exponential Random Variables. IEEE Transactions on Reliability, vol. 46, no. 4, 519-522.
  2. Coelho, C. A. (1998). The Generalized Integer Gamma distribution – a basis for distributions in Multivariate Statistics. Journal of Multivariate Analysis, 64, 86-102.
  3. Coelho, C. A. (1999). Addendum to the paper ’The Generalized IntegerGamma distribution - a basis for distributions in MultivariateAnalysis’. Journal of Multivariate Analysis, 69, 281-285.
  4. 4.0 4.1 Coelho, C. A. (2004). "The Generalized Near-Integer Gamma distribution – a basis for ’near-exact’ approximations to the distributions of statistics which are the product of an odd number of particular independent Beta random variables". Journal of Multivariate Analysis, 89 (2), 191-218. [MR2063631 (2005d:62024)] [Zbl 1047.62014] [WOS: 000221483200001]
  5. Coelho, C. A. (2006) "The exact and near-exact distributions of the product of independent Beta random variables whose second parameter is rational". Journal of Combinatorics, Information & System Sciences, 31 (1-4), 21-44. [MR2351709]
  6. Coelho, C. A., Alberto, R. P. and Grilo, L. M. (2006) "A mixture of Generalized Integer Gamma distributions as the exact distribution of the product of an odd number of independent Beta random variables.Applications". Journal of Interdisciplinary Mathematics, 9, 2, 229-248. [MR2245158] [Zbl 1117.62017]
  7. Coelho, C. A. (2007) "The wrapped Gamma distribution and wrapped sums and linear combinations of independent Gamma and Laplace distributions". Journal of Statistical Theory and Practice, 1 (1), 1-29.
  8. E. Björnson, D. Hammarwall, B. Ottersten (2009) "Exploiting Quantized Channel Norm Feedback through Conditional Statistics in Arbitrarily Correlated MIMO Systems", IEEE Transactions on Signal Processing, 57, 4027-4041