Difference between revisions of "Adjoint representation"

From formulasearchengine
Jump to navigation Jump to search
en>TakuyaMurata
 
Line 1: Line 1:
{{Lie groups |Algebras}}
{{Lie groups |Algebras}}
 
{{mergefrom|Adjoint bundle|date=December 2014}}
In [[mathematics]], the '''adjoint representation''' (or '''adjoint action''') of a [[Lie group]] ''G'' is a way of representing the elements of the group as [[linear map|linear transformations]] of the group's [[Lie algebra]], considered as a [[vector space]]. For example, in the case where ''G'' is the Lie group of [[invertible matrix|invertible matrices of size ''n'']], ''GL(n)'', the Lie algebra is the [[vector space]] of all (not necessarily invertible) ''n''-by-''n'' matrices. So in this case the adjoint representation is the vector space of ''n''-by-''n'' matrices, and any element ''g'' in ''GL(n)'' [[group action|acts]] as a linear transformation of this vector space given by conjugation: <math> x \mapsto g x g^{-1} </math>.
{{mergefrom|Adjoint representation of a Lie algebra|date=December 2014}}
In [[mathematics]], the '''adjoint representation''' (or '''adjoint action''') of a [[Lie group]] ''G'' is a way of representing the elements of the group as [[linear map|linear transformations]] of the group's [[Lie algebra]], considered as a [[vector space]]. For example, in the case where ''G'' is the Lie group of [[invertible matrix|invertible matrices of size ''n'']], ''GL(n)'', the Lie algebra is the [[vector space]] of all (not necessarily invertible) ''n''-by-''n'' matrices. So in this case the adjoint representation is the vector space of ''n''-by-''n'' matrices <math> x </math>, and any element ''g'' in ''GL(n)'' [[group action|acts]] as a linear transformation of this vector space given by conjugation: <math> x \mapsto g x g^{-1} </math>.


For any Lie group, this natural [[group representation|representation]] is obtained by linearizing (i.e. taking the [[Differential of a function|differential]] of) the [[group action|action]] of ''G'' on itself by [[conjugation (group theory)|conjugation]]. The adjoint representation can be defined for [[linear algebraic group]]s over arbitrary [[field (mathematics)|fields]].
For any Lie group, this natural [[group representation|representation]] is obtained by linearizing (i.e. taking the [[Differential of a function|differential]] of) the [[group action|action]] of ''G'' on itself by [[conjugation (group theory)|conjugation]]. The adjoint representation can be defined for [[linear algebraic group]]s over arbitrary [[field (mathematics)|fields]].


==Formal definition==
==Definition==
{{see also|Representation theory|Lie_group#The Lie algebra associated with a Lie group}}
{{see also|Representation theory|Lie_group#The Lie algebra associated with a Lie group}}
Let ''G'' be a [[Lie group]] and let <math>\mathfrak g</math> be its [[Lie algebra]] (which we identify with ''T<sub>e</sub>G'', the [[tangent space]] to the [[identity element]] in ''G''). Define a map
Let ''G'' be a [[Lie group]] and let <math>\mathfrak g</math> be its [[Lie algebra]] (which we identify with ''T<sub>e</sub>G'', the [[tangent space]] to the [[identity element]] in ''G''). Define the map
:<math>\Psi : G \to \mathrm{Aut}(G)\,</math>
:<math>\Psi : G \to \mathrm{Aut}(G), \, g \mapsto \Psi_g</math>
by the equation Ψ(''g'') = Ψ<sub>''g''</sub> for all ''g'' in ''G'', where Aut(''G'') is the [[automorphism group]] of ''G'' and the [[automorphism]] Ψ<sub>''g''</sub> is defined by
where Aut(''G'') is the [[automorphism group]] of ''G'' and the [[automorphism]] Ψ<sub>''g''</sub> is defined by
:<math>\Psi_g(h) = ghg^{-1}\,</math>
:<math>\Psi_g(h) = ghg^{-1}\,</math>
for all ''h'' in ''G''. It follows that the [[pushforward (differential)|derivative]] of Ψ<sub>''g''</sub> at the identity is an automorphism of the Lie algebra <math>\mathfrak g</math>.
for all ''h'' in ''G''. The [[pushforward (differential)|differential]] of Ψ<sub>''g''</sub> at the identity is an automorphism of the Lie algebra <math>\mathfrak g</math>. We denote this map by Ad<sub>''g''</sub>:
 
<math>(d\Psi)_{x} : T_{x}G \to T_{\Psi(x)}\mathrm{Aut}(G) </math>
 
<math>(d\Psi)_{e} : T_{e}G \to T_{\Psi(e)=e}\mathrm{Aut}(G) </math>
 
<math>(d\Psi_g)_x : T_x G \to T_{\Psi_g(x)}(G) </math>
 
<math>(d\Psi_g)_e : T_e G \to T_{\Psi_g(e) = e}(G) </math>
 
We denote this map by Ad<sub>''g''</sub>:
:<math>d(\Psi_g)_e=\mathrm{Ad}_g\colon \mathfrak g \to \mathfrak g.</math>
:<math>d(\Psi_g)_e=\mathrm{Ad}_g\colon \mathfrak g \to \mathfrak g.</math>
To say that Ad<sub>''g''</sub> is a Lie algebra automorphism is to say that Ad<sub>''g''</sub> is a [[linear transformation]] of <math>\mathfrak g</math> that preserves the [[Lie algebra#Definitions|Lie bracket]]. The map
To say that Ad<sub>''g''</sub> is a Lie algebra automorphism is to say that Ad<sub>''g''</sub> is a [[linear transformation]] of <math>\mathfrak g</math> that preserves the [[Lie algebra#Definitions|Lie bracket]]. The map
:<math>\mathrm{Ad}\colon G \to \mathrm{Aut}(\mathfrak g)</math>
:<math>\mathrm{Ad}\colon G \to \mathrm{Aut}(\mathfrak g), \, g \mapsto \mathrm{Ad}_g</math>
which sends ''g'' to Ad<sub>''g''</sub> is called the '''adjoint representation''' of ''G''. This is indeed a [[group representation|representation]] of ''G'' since <math>\mathrm{Aut}(\mathfrak g)</math> is a [[Lie subgroup]] of <math>\mathrm{GL}(\mathfrak g)</math> and the above adjoint map is a [[Lie group homomorphism]]. The dimension of the adjoint representation is the same as the dimension of the group ''G''.
is called the '''adjoint representation''' of ''G''. This is indeed a [[group representation|representation]] of ''G'' since <math>\mathrm{Aut}(\mathfrak g)</math> is a closed<ref>The condition that a linear map is a Lie algebra homomorphism is a closed condition.</ref> [[Lie subgroup]] of <math>\mathrm{GL}(\mathfrak g)</math> and the above adjoint map is a [[Lie group homomorphism]]. Note Ad is a trivial map if ''G'' is abelian.
 
If ''G'' is an (immersed) Lie subgroup of the general linear group <math>GL_n(\mathbb{C})</math>, then, since the exponential map is the matrix exponential: <math>\operatorname{exp}(X) = e^X</math>, taking the derivative of <math>\Psi_g(\operatorname{exp}(tX)) = e^{t gXg^{-1}}</math> at ''t'' = 0, one gets: for ''g'' in ''G'' and ''X'' in <math>\mathfrak{g}</math>,
:<math>\operatorname{Ad}_g(X) = gX g^{-1}</math>
where on the right we have the products of matrices.


===Adjoint representation of a Lie algebra===
===Adjoint representation of a Lie algebra===
Line 39: Line 34:
Here <math>\mathrm{Der}(\mathfrak g)</math> is the Lie algebra of <math>\mathrm{Aut}(\mathfrak g)</math> which may be identified with the [[differential algebra#Derivation on a Lie algebra|derivation algebra]] of <math>\mathfrak g</math>. The adjoint representation of a Lie algebra is related in a fundamental way to the structure of that algebra. In particular, one can show that
Here <math>\mathrm{Der}(\mathfrak g)</math> is the Lie algebra of <math>\mathrm{Aut}(\mathfrak g)</math> which may be identified with the [[differential algebra#Derivation on a Lie algebra|derivation algebra]] of <math>\mathfrak g</math>. The adjoint representation of a Lie algebra is related in a fundamental way to the structure of that algebra. In particular, one can show that
:<math>\mathrm{ad}_x(y) = [x,y]\,</math>
:<math>\mathrm{ad}_x(y) = [x,y]\,</math>
for all <math>x,y \in \mathfrak g</math>.
for all <math>x,y \in \mathfrak g</math>.<ref>
 
<math>
: <math>
\begin{align}
\begin{align}
\mathrm{ad}_x(y) & = d (\mathrm{Ad}_{x})_{e}(y) \\
\mathrm{ad}_x(y) & = d (\mathrm{Ad}_{x})_{e}(y) \\
Line 52: Line 46:
& = [x,y]
& = [x,y]
\end{align}
\end{align}
</math>
</math></ref>


== Examples ==
== Examples ==
Line 94: Line 88:
|}
|}


The [[image (mathematics)|image]] of ''G'' under the adjoint representation is denoted by Ad<sub>''G''</sub>. If ''G'' is [[connected space|connected]], the [[kernel (group theory)|kernel]] of the adjoint representation coincides with the kernel of Ψ which is just the [[center (group theory)|center]] of ''G''. Therefore the adjoint representation of a connected Lie group ''G'' is [[faithful representation|faithful]] if and only if ''G'' is centerless. More generally, if ''G'' is not connected, then the kernel of the adjoint map is the [[centralizer]] of the [[identity component]] ''G''<sub>0</sub> of ''G''. By the [[first isomorphism theorem]] we have
The [[image (mathematics)|image]] of ''G'' under the adjoint representation is denoted by Ad(''G''). If ''G'' is [[connected space|connected]], the [[kernel (group theory)|kernel]] of the adjoint representation coincides with the kernel of Ψ which is just the [[center (group theory)|center]] of ''G''. Therefore the adjoint representation of a connected Lie group ''G'' is [[faithful representation|faithful]] if and only if ''G'' is centerless. More generally, if ''G'' is not connected, then the kernel of the adjoint map is the [[centralizer]] of the [[identity component]] ''G''<sub>0</sub> of ''G''. By the [[first isomorphism theorem]] we have
:<math>\mathrm{Ad}_G \cong G/C_G(G_0).</math>
:<math>\mathrm{Ad}(G) \cong G/Z_G(G_0).</math>
 
Given a real Lie algebra <math>\mathfrak{g}</math>, by [[Lie's third theorem]], there is a connected Lie group <math>\operatorname{Int}(\mathfrak{g})</math> whose Lie algebra is the image of the adjoint representation of <math>\mathfrak{g}</math> (i.e., <math>\operatorname{Lie}(\operatorname{Int}(\mathfrak{g})) = \operatorname{ad}(\mathfrak{g})</math>.) It is called the '''adjoint group''' of <math>\mathfrak{g}</math>.
 
Now, if <math>\mathfrak{g}</math> is the Lie algebra of a connected Lie group ''G'', then <math>\operatorname{Int}(\mathfrak{g})</math> is the image of the adjoint representation of ''G'': <math>\operatorname{Int}(\mathfrak{g}) = \operatorname{Ad}(G)</math>.


== Roots of a semisimple Lie group ==
== Roots of a semisimple Lie group ==
Line 221: Line 219:


The '''co-adjoint representation''' is the [[contragredient representation]] of the adjoint representation.  [[Alexandre Kirillov]] observed that the [[orbit (group theory)|orbit]] of any vector in a co-adjoint representation is a [[symplectic manifold]].  According to the philosophy in [[representation theory]] known as the '''orbit method''' (see also the [[Kirillov character formula]]), the irreducible representations of a Lie group ''G'' should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of [[nilpotent Lie group]]s.
The '''co-adjoint representation''' is the [[contragredient representation]] of the adjoint representation.  [[Alexandre Kirillov]] observed that the [[orbit (group theory)|orbit]] of any vector in a co-adjoint representation is a [[symplectic manifold]].  According to the philosophy in [[representation theory]] known as the '''orbit method''' (see also the [[Kirillov character formula]]), the irreducible representations of a Lie group ''G'' should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of [[nilpotent Lie group]]s.
==Notes==
{{reflist}}


==References==
==References==
Line 227: Line 228:
{{DEFAULTSORT:Adjoint Representation Of A Lie Group}}
{{DEFAULTSORT:Adjoint Representation Of A Lie Group}}
[[Category:Representation theory of Lie groups]]
[[Category:Representation theory of Lie groups]]
[[fr:Représentation adjointe]]
[[ru:Присоединённое представление группы Ли]]
[[zh:伴随表示]]

Latest revision as of 00:01, 18 December 2014

Template:Lie groups Template:Mergefrom Template:Mergefrom In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, in the case where G is the Lie group of invertible matrices of size n, GL(n), the Lie algebra is the vector space of all (not necessarily invertible) n-by-n matrices. So in this case the adjoint representation is the vector space of n-by-n matrices , and any element g in GL(n) acts as a linear transformation of this vector space given by conjugation: .

For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.

Definition

{{#invoke:see also|seealso}} Let G be a Lie group and let be its Lie algebra (which we identify with TeG, the tangent space to the identity element in G). Define the map

where Aut(G) is the automorphism group of G and the automorphism Ψg is defined by

for all h in G. The differential of Ψg at the identity is an automorphism of the Lie algebra . We denote this map by Adg:

To say that Adg is a Lie algebra automorphism is to say that Adg is a linear transformation of that preserves the Lie bracket. The map

is called the adjoint representation of G. This is indeed a representation of G since is a closed[1] Lie subgroup of and the above adjoint map is a Lie group homomorphism. Note Ad is a trivial map if G is abelian.

If G is an (immersed) Lie subgroup of the general linear group , then, since the exponential map is the matrix exponential: , taking the derivative of at t = 0, one gets: for g in G and X in ,

where on the right we have the products of matrices.

Adjoint representation of a Lie algebra

{{#invoke:main|main}}

One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.

Taking the derivative of the adjoint map

gives the adjoint representation of the Lie algebra :

Here is the Lie algebra of which may be identified with the derivation algebra of . The adjoint representation of a Lie algebra is related in a fundamental way to the structure of that algebra. In particular, one can show that

for all .[2]

Examples

  • If G is abelian of dimension n, the adjoint representation of G is the trivial n-dimensional representation.
  • If G is a matrix Lie group (i.e. a closed subgroup of GL(n,C)), then its Lie algebra is an algebra of n×n matrices with the commutator for a Lie bracket (i.e. a subalgebra of ). In this case, the adjoint map is given by Adg(x) = gxg−1.
  • If G is SL(2, R) (real 2×2 matrices with determinant 1), the Lie algebra of G consists of real 2×2 matrices with trace 0. The representation is equivalent to that given by the action of G by linear substitution on the space of binary (i.e., 2 variable) quadratic forms.

Properties

The following table summarizes the properties of the various maps mentioned in the definition

Lie group homomorphism: Lie group automorphism:
Lie group homomorphism: Lie algebra automorphism:
Lie algebra homomorphism: Lie algebra derivation:

The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G0 of G. By the first isomorphism theorem we have

Given a real Lie algebra , by Lie's third theorem, there is a connected Lie group whose Lie algebra is the image of the adjoint representation of (i.e., .) It is called the adjoint group of .

Now, if is the Lie algebra of a connected Lie group G, then is the image of the adjoint representation of G: .

Roots of a semisimple Lie group

If G is semisimple, the non-zero weights of the adjoint representation form a root system. To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t1, ..., tn) as our maximal torus T. Conjugation by an element of T sends

Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors titj−1 on the various off-diagonal entries. The roots of G are the weights diag(t1, ..., tn) → titj−1. This accounts for the standard description of the root system of G = SLn(R) as the set of vectors of the form eiej.

Example SL(2, R)

Let us compute the root system for one of the simplest cases of Lie Groups. Let us consider the group SL(2, R) of two dimensional matrices with determinant 1. This consists of the set of matrices of the form:

with a, b, c, d real and ad − bc = 1.

A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form

with . The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices

If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain

The matrices

are then 'eigenvectors' of the conjugation operation with eigenvalues . The function Λ which gives is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function λ giving θ is a weight of the Lie Algebra with weight space given by the span of the matrices.

It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).

Variants and analogues

The adjoint representation can also be defined for algebraic groups over any field.

The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of nilpotent Lie groups.

Notes

  1. The condition that a linear map is a Lie algebra homomorphism is a closed condition.