Buffering agent: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q6322971
en>Cydebot
m Robot - Speedily moving category Acid-base chemistry to Category:Acid–base chemistry per CFDS.
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{one source|date=December 2010}}
Yesterday I woke up and [http://www.adobe.com/cfusion/search/index.cfm?term=&realized+-&loc=en_us&siteSection=home realized -] I have also been single for a while today and after much bullying from friends I now find myself opted for web dating. They promised me that there are lots of normal, pleasant and entertaining folks to fulfill, therefore the pitch is gone by here!<br>I strive to maintain as physically healthy as potential staying at the fitness center many times a week. I enjoy my athletics and strive  [http://lukebryantickets.neodga.com luke bryan tour schedule 2014] to play or view because many a possible. Being wintertime I shall often at Hawthorn matches. Notice: I've observed the carnage of wrestling suits at stocktake sales, Supposing that you would contemplated purchasing an athletics I do not mind.<br>My buddies and household are amazing and spending time with them at tavern gigabytes or meals is obviously a necessity. As I come to realize you can never get a significant conversation with the sound I haven't ever been in to dance clubs. I also have two unquestionably cheeky and really  luke bryan 2014 tour Schedule [[http://www.museodecarruajes.org museodecarruajes.org]] adorable canines that are almost always excited to meet fresh individuals.<br><br>My web site [http://lukebryantickets.pyhgy.com Luke Bryan Concert]
In [[molecular physics]], the '''molecular term symbol''' is a shorthand expression of the [[group representation]] and [[angular momentum|angular momenta]] that characterize the state of a [[molecule]], i.e. its electronic [[quantum state]] which is an [[eigenstate]] of the [[electronic molecular Hamiltonian]]. It is the equivalent of the '''[[term symbol]]''' for the atomic case. However, the following presentation is restricted to the case of homonuclear [[diatomic]] molecules, or [[Symmetry group|symmetric]] molecules with an inversion centre.  For heteronuclear diatomic molecules, the ''u/g'' symbol does not correspond to any exact symmetry of the [[electronic molecular Hamiltonian]]. In the case of less symmetric molecules the molecular term symbol contains the symbol of the [[group representation]] to which the molecular electronic state belongs.  
 
It has the general form:
:<math>{}^{2S+1}\!\Lambda^{(+/-)}_{\Omega,(g/u)}</math>
where
* ''S'' is the total [[spin quantum number]]
* &Lambda; is the projection of the orbital angular momentum along the internuclear axis
* &Omega; is the projection of the total angular momentum along the internuclear axis
* ''u''/''g'' is the parity
* +/&minus; is the reflection symmetry along an arbitrary plane containing the internuclear axis
 
==&Lambda; quantum number==
For atoms, we use ''S'', ''L'', ''J'' and ''M<sub>J</sub>'' to characterize a given [[quantum state|state]]. In linear molecules, however, the lack of spherical symmetry destroys the relationship <math>[\hat{\mathbf L}^2, \hat H]=0</math>, so ''L'' ceases to be a [[good quantum number]]. A new set of [[operator (physics)|operators]] have to be used instead: <math>\{\hat{\mathbf S}^2, \hat{\mathbf{S}}_z, \hat{\mathbf{L}}_z, \hat{\mathbf{J}}_z=\hat{\mathbf{S}}_z + \hat{\mathbf{L}}_z\}</math>, where the ''z''-axis is defined along the internuclear axis of the molecule. Since these [[commutative operation|operators commute]] with each other and with the [[Hamiltonian (quantum mechanics)|Hamiltonian]] on the limit of negligible spin-orbit coupling, their [[eigenvalue]]s may be used to describe a molecule state through the quantum numbers ''S'', ''M<sub>S</sub>'', ''M<sub>L</sub>'' and ''M<sub>J</sub>''.  
 
The cylindrical symmetry of a linear molecule ensures that positive and negative values of a given [[magnetic quantum number|''m<sub>l</sub>'']] for an [[electron]] in a [[molecular orbital]] will be [[degeneracy (mathematics)|degenerate]] in the absence of spin-orbit coupling. Different molecular orbitals are classified with a new quantum number, &lambda;, defined as
:&lambda; = |''m<sub>l</sub>''|
Following the spectroscopic notation pattern, molecular orbitals are designated by a smallcase Greek letter: for &lambda; = 0, 1, 2, 3,... orbitals are called &sigma;, &pi;, &delta;, &phi;... respectively.
 
Now, the total ''z''-projection of ''L'' can be defined as
:<math>M_L=\sum_i {m_l}_i.</math>
As states with positive and negative values of ''M<sub>L</sub>'' are degenerate, we define
:&Lambda; = |''M<sub>L</sub>''|,
and a capital Greek letter is used to refer to each value: &Lambda; = 0, 1, 2, 3... are coded as &Sigma;, &Pi;, &Delta;, &Phi;... respectively.
The molecular term symbol is then defined as
:<sup>2''S''+1</sup>&Lambda;
and the number of electron degenerate states (under the absence of spin-orbit coupling) corresponding to this term symbol is given by:
* (2''S''+1)&times;2 if &Lambda; is not 0
* (2''S''+1) if &Lambda; is 0.
 
==&Omega; and spin–orbit coupling==
Spin–orbit coupling lifts the degeneracy of the electronic states. This is because the ''z''-component of spin interacts with the ''z''-component of the orbital angular momentum, generating a total electronic angular momentum along the molecule axis '''J'''<sub>z</sub>. This is characterized by the ''M<sub>J</sub>'' quantum number, where
:''M<sub>J</sub>'' = ''M<sub>S</sub>'' + ''M<sub>L</sub>''.
Again, positive and negative values of ''M<sub>J</sub>'' are degenerate, so the pairs (''M<sub>L</sub>'', ''M<sub>S</sub>'') and  (&minus;''M<sub>L</sub>'', &minus;''M<sub>S</sub>'') are degenerate: {(1, 1/2), (&minus;1, &minus;1/2)}, and {(1, &minus;1/2), (&minus;1, 1/2)} represent two different degenerate states. These pairs are grouped together with the quantum number &Omega;, which is defined as the sum of the pair of values (''M<sub>L</sub>'', ''M<sub>S</sub>'') for which ''M<sub>L</sub>'' is positive. Sometimes the equation
:&Omega; = &Lambda; + ''M<sub>S</sub>''
is used (often &Sigma; is used instead of ''M<sub>S</sub>''). Note that although this gives correct values for &Omega; it could be misleading, as obtained values do not correspond to states indicated by a given pair of values (''M<sub>L</sub>'',''M<sub>S</sub>''). For example, a state with (&minus;1, &minus;1/2) would give an &Omega; value of &Omega; = |&minus;1| + (&minus;1/2) = &minus;1/2, which is wrong. Choosing the pair of values with ''M<sub>L</sub>'' positive will give a &Omega; = 3/2 for that state.
 
With this, a '''level''' is given by
:<math>{}^{2S+1}\Lambda_{\Omega}</math>
 
Note that &Omega; can have negative values and subscripts ''r'' and ''i'' represent regular (normal) and inverted multiplets, respectively.<ref>p. 337, ''Molecular Spectra and Molecular Structure, Vol I - Spectra of Diatomic Molecules'', G. Herzberg, Reprint of Second Edition w/corrections, Malabar, Florida: Krieger Publishing Company, 1989. ISBN 0-89464-268-5</ref> For a <sup>4</sup>&Pi; term there are four degenerate (''M<sub>L</sub>'', ''M<sub>S</sub>'') pairs: {(1, 3/2), (&minus;1, &minus;3/2)}, {(1, 1/2), (&minus;1, &minus;1/2)}, {(1, &minus;1/2), (&minus;1, 1/2)}, {(1, &minus;3/2), (&minus;1, 3/2)}. These correspond to &Omega; values of 5/2, 3/2, 1/2 and &minus;1/2, respectively.
Approximating the spin–orbit Hamiltonian to first order [[Perturbation theory (quantum mechanics)|perturbation theory]], the energy level is given by
:''E'' = ''A'' ''M<sub>L</sub>'' ''M<sub>S</sub>''
where ''A'' is the spin–orbit constant. For <sup>4</sup>&Pi; the &Omega; values 5/2, 3/2, 1/2 and &minus;1/2 correspond to energies of 3''A''/2, ''A''/2, &minus;''A''/2 and &minus;3''A''/2. Despite of having the same magnitude, levels of &Omega; = ±1/2 have different energies associated, so they are not degenerate. With that convention, states with different energies are given different &Omega; values. For states with positive values of ''A'' (which are said to be ''regular''), increasing values of &Omega; correspond to increasing values of energies; on the other hand, with ''A'' negative (said to be ''inverted'') the energy order is reversed. Including higher-order effects can lead to a spin-orbital levels or energy that do not even follow the increasing value of &Omega;.  
 
When &Lambda; = 0 there is no spin–orbit splitting to first order in perturbation theory, as the associated energy is zero. So for a given ''S'', all of its ''M<sub>S</sub>'' values are degenerate. This degeneracy is lifted when spin–orbit interaction is treated to higher order in perturbation theory, but still states with same |''M<sub>S</sub>''| are degenerate in a non-rotating molecule. We can speak of a <sup>5</sup>&Sigma;<sub>2</sub> substate, a <sup>5</sup>&Sigma;<sub>1</sub> substate or a <sup>5</sup>&Sigma;<sub>0</sub>
substate. Except for the case &Omega; = 0, these substates have a degeneracy of 2.
 
==Reflection through a plane containing the internuclear axis==
There are an infinite number of planes containing the internuclear axis and hence there are an infinite number of possible reflections. For any of these planes, molecular terms with &Lambda; > 0 always have a state which is symmetric with respect to this reflection and one state that is antisymmetric. Rather than labelling those situations as, e.g., <sup>2</sup>&Pi;<sup>±</sup>, the ± is omitted.
 
For the &Sigma; states, however, this two-fold degeneracy disappears, and all &Sigma; states are either symmetric under any plane containing the internuclear axis, or  antisymmetric. These two situations are labeled as &Sigma;<sup>+</sup> or &Sigma;<sup>&minus;</sup>.
 
==Reflection through an inversion center: u and g symmetry==
Taking the molecule center of mass as origin of coordinates, consider the change of all electrons' position from (''x<sub>i</sub>'', ''y<sub>i</sub>'', ''z<sub>i</sub>'') to (&minus;''x<sub>i</sub>'', &minus;''y<sub>i</sub>'', &minus;''z<sub>i</sub>''). If the resulting wave function is unchanged, it is said to be ''gerade'' (German for even); if the wave function changes sign then it is said to be ''ungerade'' (odd). For a molecule with a center of inversion, all orbitals will be symmetric or antisymmetric. The resulting wavefunction for the whole multielectron system will be ''gerade'' if an even number of electrons is in ''ungerade'' orbitals, and ''ungerade'' if there is an odd number of electrons in ''ungerade'' orbitals, independently of the number of electrons in ''gerade'' orbitals.
 
==Alternative empirical notation==
Electronic states are also often identified by an empirical single-letter label. The ground state is labelled X, excited states of the same multiplicity (i.e., having the same spin quantum number) are labelled in ascending order of energy with capital letters A, B, C...; excited states having different multiplicity than the ground state are labelled with lower-case letters a, b, c...
In polyatomic molecules (but not in diatomic) it is customary to add a tilde (e.g. <math>\tilde X</math>, <math>\tilde a</math>) to these empirical labels to prevent possible confusion with symmetry labels based on group representations.
 
==References==
{{reflist}}
 
[[Category:Molecular physics]]
[[Category:Quantum chemistry]]
[[Category:Atomic physics]]
[[Category:Spectroscopy]]

Latest revision as of 01:58, 6 August 2014

Yesterday I woke up and realized - I have also been single for a while today and after much bullying from friends I now find myself opted for web dating. They promised me that there are lots of normal, pleasant and entertaining folks to fulfill, therefore the pitch is gone by here!
I strive to maintain as physically healthy as potential staying at the fitness center many times a week. I enjoy my athletics and strive luke bryan tour schedule 2014 to play or view because many a possible. Being wintertime I shall often at Hawthorn matches. Notice: I've observed the carnage of wrestling suits at stocktake sales, Supposing that you would contemplated purchasing an athletics I do not mind.
My buddies and household are amazing and spending time with them at tavern gigabytes or meals is obviously a necessity. As I come to realize you can never get a significant conversation with the sound I haven't ever been in to dance clubs. I also have two unquestionably cheeky and really luke bryan 2014 tour Schedule [museodecarruajes.org] adorable canines that are almost always excited to meet fresh individuals.

My web site Luke Bryan Concert