Complement (set theory)

From formulasearchengine
Revision as of 09:25, 28 August 2012 by en>Deon Steyn (→‎Complements in various programming languages: Correct total and utter misunderstand of SQL set theory)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In set theory, a complement of a set A refers to things not in (that is, things outside of), A. The relative complement of A with respect to a set B, is the set of elements in B but not in A. When all sets under consideration are considered to be subsets of a given set U, the absolute complement of A is the set of all elements in U but not in A.

Relative complement

If A and B are sets, then the relative complement of A in B, also termed the set-theoretic difference of B and A, is the set of elements in B, but not in A.

The relative complement of A in B is denoted BA according to the ISO 31-11 standard (sometimes written BA, but this notation is ambiguous, as in some contexts it can be interpreted as the set of all ba, where b is taken from B and a from A).



The following lists some notable properties of relative complements in relation to the set-theoretic operations of union and intersection.

If A, B, and C are sets, then the following identities hold:

  • C ∖ (A ∩ B)  =  (C ∖ A)∪(C ∖ B)
  • C ∖ (A ∪ B)  =  (C ∖ A)∩(C ∖ B)
  • C ∖ (B ∖ A)  =  (A ∩ C)∪(C ∖ B)
  • (B ∖ A) ∩ C  =  (B ∩ C) ∖ A  =  B∩(C ∖ A)
  • (B ∖ A) ∪ C  =  (B ∪ C) ∖ (A ∖ C)
  • A ∖ A  =  Ø
  • Ø ∖ A  =  Ø
  • A ∖ Ø  =  A

Absolute complement

If a universe U is defined, then the relative complement of A in U is called the absolute complement (or simply complement) of A, and is denoted by Ac or sometimes A′, also the same set often{{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= {{#invoke:Category handler|main}}{{#invoke:Category handler|main}}[citation needed] }} is denoted by or if U is fixed, that is:

Ac  = U ∖ A.

For example, if the universe is the set of integers, then the complement of the set of odd numbers is the set of even numbers.

The following lists some important properties of absolute complements in relation to the set-theoretic operations of union and intersection.

If A and B are subsets of a universe U, then the following identities hold:

De Morgan's laws:
Complement laws:
Involution or double complement law:
Relationships between relative and absolute complements:
  • A ∖ B = A ∩ Bc
  • (A ∖ B)c = Ac ∪ B

The first two complement laws above shows that if A is a non-empty, proper subset of U, then {A, Ac} is a partition of U.


In the LaTeX typesetting language, the command \setminus is usually used for rendering a set difference symbol, which is similar to a backslash symbol. When rendered the \setminus command looks identical to \backslash except that it has a little more space in front and behind the slash, akin to the LaTeX sequence \mathbin{\backslash}. A variant \smallsetminus is available in the amssymb package.

Complements in various programming languages

Some programming languages allow for manipulation of sets as data structures, using these operators or functions to construct the difference of sets a and b:


<apply xmlns=""> <setdiff/> <ci type="set">A</ci> <ci type="set">B</ci></apply>
SetDifference := a - b;
diff = a.difference(b)[3]
diff = a - b[3]
diff = a.clone();
diff = a -- b[5]
set_difference(a.begin(), a.end(), b.begin(), b.end(), result.begin());
.NET Framework
a \\ b [6]
Common Lisp
set-difference, nset-difference[7]
Unix shell
comm -23 a b[9]
grep -vf b a # less efficient, but works with small unsorted sets
array_diff($a, $b);[10]
diff = a - b[12]
#for perl version >= 5.10
@a = grep {not $_ ~~ @b} @a;
a(X),\+ b(X).

See also


  1. Complement. Mathematica Documentation Center for version 6.0, updated in 2008. Accessed on March 7, 2008.
  2. Setdiff. MATLAB Function Reference for version 7.6, updated in 2008. Accessed on May 19, 2008.
  3. 3.0 3.1 Set Types -- set, frozenset. Python Library Reference release 2.5, updated on September 19, 2006. Accessed on February 13, 2008.
  4. Set (Java 2 Platform SE 5.0). JavaTM 2 Platform Standard Edition 5.0 API Specification, updated in 2004. Accessed on February 13, 2008.
  5. scala.collection.Set. Scala Standard Library release 2.8.1, Accessed on December 09, 2010.
  6. Data.Set (Haskell)
  7. Common Lisp HyperSpec, Function set-difference, nset-difference. Accessed on September 8, 2009.
  8. Set.S (OCaml).
  9. comm(1), Unix Seventh Edition Manual, 1979.
  10. PHP: array_diff, PHP Manual
  11. R Reference manual p. 410.
  12. Class: Array Ruby Documentation

am:የውጭ ስብስብ ar:مجموعة مكملة be:Дапаўненне мностваў bg:Разлика (теория на множествата) ca:Complementari cs:Doplněk množiny de:Komplement (Mengenlehre) es:Complemento de un conjunto eo:Komplemento (aroteorio) eu:Osagarri (multzo-teoria) fr:Complémentaire (théorie des ensembles) xal:Немгн ko:여집합 is:Fyllimengi it:Insieme complemento he:משלים (מתמטיקה) nl:Complement (verzamelingenleer) ja:差集合 oc:Ensemble complementari pl:Dopełnienie zbioru pt:Complementar ru:Разность множеств sk:Rozdiel množín fi:Joukkoerotus sv:Komplement th:ส่วนเติมเต็ม uk:Доповнення множин vi:Phần bù zh-classical:補集 zh:补集