Conway's Game of Life: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{refimprove|date=January 2014}}
The author's name is Evon. Debt collecting the place I earn an income but I've already tried for another a specific. One of her favorite hobbies is to ride horses and she'd never stop. California will be the place she loves most but she needs to keep because of her family. If you for you to find out more the look at my website: http://ppir.at/stoya80387<br><br>Here is my website: [http://ppir.at/stoya80387 stoya]
{{bare URLs|date=January 2014}}
'''Isotope separation''' is the process of concentrating specific [[isotope]]s of a [[chemical element]] by removing other isotopes, for example separating [[natural uranium]] into [[enriched uranium]] and [[depleted uranium]]. This is a crucial process in the manufacture of uranium fuel for nuclear power stations, and is also required for the creation of uranium based [[nuclear weapons]]. Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or ''grade''.
While different chemical elements can be purified through [[chemical reaction|chemical processes]], isotopes of the same element have nearly identical chemical properties, which makes this type of separation impractical, except for separation of [[deuterium]].
 
==Separation techniques==
There are three types of isotope separation techniques:
* Those based directly on the [[atomic weight]] of the isotope.
* Those based on the small differences in chemical reaction rates produced by different atomic weights.
* Those based on properties not directly connected to atomic weight, such as [[nuclear resonances]].
 
The third type of separation is still experimental; practical separation techniques all depend in some way on the atomic mass. It is therefore generally easier to separate isotopes with a larger relative mass difference. For example [[deuterium]] has twice the mass of ordinary (light) [[hydrogen]] and it is generally easier to purify it than to separate [[uranium-235]] from the more common [[uranium-238]]. On the other extreme, separation of fissile [[plutonium-239]] from the common impurity plutonium-240, while desirable in that it would allow the creation of gun-type nuclear weapons from plutonium, is generally agreed to be impractical.{{Citation needed|date=June 2008}}
 
{{See also|Enriched uranium}}
 
==Enrichment cascades==
All large-scale isotope separation schemes employ a number of similar stages which produce successively higher concentrations of the desired isotope. Each stage enriches the product of the previous step further before being sent to the next stage. Similarly, the tailings from each stage are returned to the previous stage for further processing. This creates a sequential enriching system called a [[cascade (chemical engineering)|cascade]].
 
There are two important factors that affect the performance of a cascade. The first is the separation factor (the square root of the mass ratio of the two isotopes), which is a number greater than 1. The second is the number of required stages to get the desired purity.
 
==Commercial materials==
To date, large-scale commercial isotope separation of only three elements has occurred. In each case, the rarer of the two most common isotopes of an element has been concentrated for use in nuclear technology:
* [[Uranium]] isotopes have been separated to prepare [[enriched uranium]] for use as [[nuclear reactor]] fuel and in [[nuclear weapons]].
* [[Hydrogen]] isotopes have been separated to prepare [[heavy water]] for use as a moderator in nuclear reactors.
* [[Lithium]]-6 has been concentrated for use in [[nuclear weapon|thermonuclear weapons]].
 
Some isotopically purified elements are used in smaller quantities for specialist applications, especially in the semiconductor industry, where purified [[silicon]] is used to improve crystal structure and thermal conductivity.<ref>{{cite web | last =Thomas | first =Andrew | title =AMD tests 'super silicon' to beat heat problems | work =The Register: Channel | publisher =The Register | date =November 30, 2000 | url =http://www.theregister.co.uk/2000/11/30/amd_tests_super_silicon/ | accessdate = January 17, 2014}}</ref>
 
Isotope separation is an important process for both peaceful and military nuclear technology, and therefore the capability that a nation has for isotope separation is of extreme interest to the intelligence community.
 
==Alternatives==
The only alternative to isotope separation is to manufacture the required isotope in its pure form. This may be done by irradiation of a suitable target, but care is needed in target selection and other factors to ensure that only the required isotope of the element of interest is produced. Isotopes of other elements are not so great a problem as they can be removed by chemical means.
 
This is particularly relevant in the preparation of high-grade [[plutonium-239]] for use in weapons. It is not practical to separate Pu-239 from Pu-240 or Pu-241. [[Fissile]] Pu-239 is produced following neutron capture by uranium-238, but further neutron capture will produce [[Pu-240]] which is less fissile and worse, is a fairly strong neutron emitter, and [[Pu-241]] which decays to [[Am-241]], a strong alpha emitter that poses self-heating and radiotoxicity problems. Therefore, the uranium targets used to produce military plutonium must be irradiated for only a short time, to minimise the production of these unwanted isotopes.  Conversely, blending plutonium with Pu-240 renders it less suitable for nuclear weapons.
 
==Practical methods of separation==
 
===Diffusion===
Often done with gases, but also with liquids, the [[diffusion]] method relies on the fact that in thermal equilibrium, two isotopes with the same energy will have different average velocities. The lighter atoms (or the molecules containing them) will travel more quickly and be more likely to diffuse through a membrane. The difference in speeds is proportional to the square root of the mass ratio, so the amount of separation is small and many cascaded stages are needed to obtain high purity. This method is expensive due to the work needed to push gas through a membrane and the many stages necessary.
 
The first large-scale separation of uranium isotopes was achieved by the [[United States]] in large gaseous diffusion separation plants at [[Oak Ridge National Laboratory|Oak Ridge Laboratories]], which were established as part of the [[Manhattan Project]]. These used [[uranium hexafluoride]] gas as the process fluid. Nickel powder and electro-deposited nickel mesh diffusion barriers were pioneered by Edward Adler and Edward Norris.<ref name="Rhodes1986">{{cite book|author=Richard Rhodes|title=The Making of the Atomic Bomb|url=http://books.google.com/books?id=5o70W8CR6vMC|accessdate=January 17, 2014|year=1986|publisher=Simon & Schuster|isbn=978-0-684-81378-3|page=494}}</ref> See [[gaseous diffusion]].
 
===Centrifugal effect===
[[Image:Gas centrifuge cascade.jpg|right|150px|thumb|A cascade of gas centrifuges at a U.S. uranium enrichment plant.]]
 
[[Centrifugal force|Centrifugal effect]] schemes rapidly rotate the material allowing the heavier isotopes to go closer to an outer radial wall. This too is often done in gaseous form using a [[Zippe-type centrifuge]].
 
The centrifugal separation of isotopes was first suggested by Aston and Lindemann<ref>{{cite journal | last =Lindemann | first =F. A | authorlink = Frederick Lindemann, 1st Viscount Cherwell | last2 =Aston | first2 =F. W. | authorlink2 =Francis William Aston | title =The possibility of separating isotopes | journal =Philosophical Magazine Series 6 | volume =37 | issue =221 | pages =523-534 | publisher =Taylor& Francis Group | location = | date =1919 | url =http://www.tandfonline.com/doi/pdf/10.1080/14786440508635912#.UtlKFRAo7IU | doi =10.1080/14786440508635912 | accessdate = January 17, 2014}}</ref> in 1919 and the first successful experiments were reported by Beams and Haynes<ref>J. W. Beams and F. B. Haynes, The Separation of Isotopes by Centrifuging, ''Phys. Rev.'', 1936, '''50''', pp. 491–492.</ref> on isotopes of chlorine in 1936. However attempts to use the technology during the [[Manhattan project]] were unproductive. In modern times it is the main method used throughout the world to enrich uranium and as a result remains a fairly secretive process, hindering a more widespread uptake of the technology. In general a feed of UF<sub>6</sub> gas is connected to a cylinder that is rotated at high speed. Near the outer edge of the cylinder heavier gas molecules containing U-238 collect, while molecules containing U-235 concentrate at the center and are then fed to another cascade stage.<ref>Stanley Whitley, Review of the gas centrifuge until 1962. Part I: Principles of separation physics, Rev. Mod. Phys., 1984, '''56''', pp. 41–66.</ref> Use of gaseous centrifugal technology to enrich isotopes is desirable as power consumption is greatly reduced when compared to more conventional techniques such as diffusion plants since fewer cascade steps are required to reach similar degrees of separation. In fact, [[gas centrifuge]]s using uranium hexafluoride have largely replaced gaseous diffusion technology for uranium enrichment.{{Citation needed|date=May 2010}} As well as requiring less energy to achieve the same separation, far smaller scale plants are possible, making them an economic possibility for a small nation attempting to produce a [[nuclear weapon]]. Pakistan is believed to have used this method in developing its nuclear weapons.
 
[[Vortex tube]]s were used by [[South Africa]] in their [[Helikon vortex separation process]]. The gas is injected tangentially into a chamber with special geometry that further increases its rotation to a very high rate, causing the isotopes to separate. The method is simple because vortex tubes have no moving parts, but energy intensive, about 50 times greater than gas centrifuges. A similar process, known as ''jet nozzle'', was created in Germany, with a demonstration plant built in Brazil, and they went as far as developing a site to fuel the country's nuclear plants.
 
===Electromagnetic===<!-- This section is linked from [[Oak Ridge National Laboratory]] -->
[[Image:Diagram of uranium isotope separation in the calutron.png|thumb|right|200px|Schematic diagram of uranium isotope separation in a [[calutron]].]]
This method is a form of [[mass spectrometry]], and is sometimes referred to by that name. It uses the fact that charged particles are deflected in a [[magnetic field]] and the amount of deflection depends upon the particle's mass. It is very expensive for the quantity produced, as it has an extremely low throughput, but it can allow very high purities to be achieved. This method is often used for processing small amounts of pure isotopes for research or specific use (such as [[isotopic tracer]]s), but is impractical for industrial use.
 
At [[Oak Ridge, Tennessee|Oak Ridge]] and at the [[University of California, Berkeley]], [[Ernest O. Lawrence]] developed electromagnetic separation for much of the uranium used in the first United States atomic bomb (see [[Manhattan Project]]). Devices using his principle are named [[calutron]]s. After the war the method was largely abandoned as impractical. It had only been undertaken (along with diffusion and other technologies) to guarantee there would be enough material for use, whatever the cost. Its main eventual contribution to the war effort was to further concentrate material from the gaseous diffusion plants to even higher levels of purity.
 
===Laser===
In this method a [[laser]] is tuned to a wavelength which excites only one isotope of the material and ionizes those atoms preferentially. The resonant absorption of light for an isotope is dependent upon its mass and certain [[hyperfine structure|hyperfine]] interactions between electrons and the nucleus, allowing finely tuned lasers to interact with only one isotope. After the atom is ionized it can be removed from the sample by applying an [[electric field]]. This method is often abbreviated as [[AVLIS]] (atomic vapor laser isotope separation). This method has only recently been developed as laser technology has improved, and is currently not used extensively. However, it is a major concern to those in the field of [[nuclear proliferation]] because it may be cheaper and more easily hidden than other methods of isotope separation.  [[Tunable laser]]s used in AVLIS include the [[dye laser]]<ref>[[F. J. Duarte]] and L.W. Hillman (Eds.), Dye Laser Principles (Academic, New York, 1990) Chapter 9.</ref> and more recently [[diode laser]]s.<ref>F. J. Duarte (Ed.), Tunable Laser Applications, 2nd Ed. (CRC, 2008) Chapter 11</ref>
 
A second method of laser separation is known as [[molecular laser isotope separation]] (MLIS). In this method, an infrared laser is directed at [[uranium hexafluoride]] gas, exciting molecules that contain a [[Uranium-235|U-235]] atom. A second laser frees a [[fluorine]] atom, leaving [[uranium pentafluoride]] which then precipitates out of the gas. Cascading the MLIS stages is more difficult than with other methods because the UF<sub>5</sub> must be refluorinated (back to UF<sub>6</sub>) before being introduced into the next MLIS stage. Alternative MLIS schemes are currently being developed (using a first laser in the near-infrared or visible region) where an enrichment of over 95% can be obtained in a single stage, but the methods have not (yet) reached industrial feasibility. This method is called OP-IRMPD (Overtone Pre-excitation—[[infrared multiphoton dissociation|IR Multiple Photon Dissociation]]).
 
Finally, the [[SILEX]] process, developed by [[Silex Systems]] in Australia, has recently been licensed to General Electric for the development of a pilot enrichment plant.  The method uses uranium hexafluoride as a feedstock, and uses magnets to separate the isotopes after one isotope is preferentially ionized.  Further details of the process are not disclosed.
 
Quite recently yet another scheme has been proposed for the [[deuterium]] separation using Trojan wavepackets in circularly polarized electromagnetic field. The process of [[Trojan wave packet]] formation by the adiabatic-rapid passage  depends in ultra-sensitive way on the [[reduced mass|reduced]] electron and nucleus mass which with the same field frequency further leads to excitation of Trojan or anti-Trojan wavepacket depending on the kind of the isotope. Those and their giant, rotating electric [[electric dipole moment]]s are then <math>\pi</math>-shifted in phase and the beam of such atoms splits in the gradient of the electric field in the analogy to [[Stern–Gerlach experiment]].{{citation needed|date=January 2014}}
 
===Chemical methods===
Although isotopes of a single element are normally described as having the same chemical properties, this is not strictly true. In particular, [[reaction rate]]s are very slightly affected by atomic mass.
 
Techniques using this are most effective for light atoms such as hydrogen. Lighter isotopes tend to react or [[evaporation|evaporate]] more quickly than heavy isotopes, allowing them to be separated. This is how [[heavy water]] is produced commercially, see [[Girdler sulfide process]] for details. Lighter isotopes also disassociate more rapidly under an electric field. This process in a large [[Cascade (chemical engineering)|cascade]] was used at the heavy water production plant at [[Rjukan]].
 
One candidate for the largest [[kinetic isotope effect|kinetic isotopic effect]] ever measured at room temperature, 305, may eventually be used for the separation of [[tritium]] (T). The effects for the oxidation of triated [[formate]] anions to HTO were measured as:
 
{|
|-
| k(HCO<sub>2-</sub>) = 9.54 M<sup>−1</sup>s<sup>−1</sup>
| k(H)/k(D) = 38
|-
| k(DCO<sub>2-</sub>) = 9.54 M<sup>−1</sup>s<sup>−1</sup>
| k(D)/k(T) = 8.1
|-
| k(TCO<sub>2-</sub>) = 9.54 M<sup>−1</sup>s<sup>−1</sup>
| k(H)/k(T) = 305
|}
 
===Gravity===
Isotopes of carbon, oxygen, and nitrogen can be purified by chilling these gases or compounds nearly to their liquification temperature in very tall ({{convert|200|to|700|ft|m}}) columns. The heavier isotopes sink and the lighter isotopes rise, where they are easily collected. The process was developed in the late 1960s by scientists at Los Alamos National Laboratory.<ref>http://www.lanl.gov/quarterly/q_w03/spotlight.shtml</ref> This process is also called "[[cryogenic distillation]]".<ref>http://www.lanl.gov/orgs/pa/News/080801.html</ref>
 
== The SWU (separative work unit) ==
'''Separative Work Unit (SWU)''' is a complex unit which is a function of the amount of uranium processed and the degree to which it is enriched, ''i.e.'' the extent of increase in the concentration of the U-235 isotope relative to the remainder.
 
The unit is strictly: '''Kilogram Separative Work Unit''', and it measures the quantity of separative work (indicative of energy used in enrichment) when feed and product quantities are expressed in kilograms. The effort expended in separating a mass ''F'' of feed of assay ''xf'' into a mass ''P'' of product assay xp and waste of mass ''W'' and assay ''xw'' is expressed in terms of the number of separative work units needed, given by the expression SWU = ''WV''(''xw'') + ''PV''(''xp'') - ''FV''(''xf''), where ''V''(''x'') is the "value function," defined as ''V''(''x'') = (1 - 2''x'') ln ((1 - ''x'') /''x'').
 
Separative work is expressed in SWUs, kg SW, or kg UTA (from the German ''Urantrennarbeit'' )
* 1  SWU = 1&nbsp;kg SW = 1&nbsp;kg UTA
* 1 kSWU = 1.0 t SW = 1 t  UTA
* 1 MSWU = 1  kt SW = 1 kt UTA
 
If, for example, you begin with 100 kilograms (220 pounds) of natural uranium, it takes about 60 SWU to produce 10 kilograms (22 pounds) of uranium enriched in U-235 content to 4.5%
 
==Isotope separators for research==
Radioactive beams of specific isotopes are widely used in the fields of experimental physics, biology and materials science. The production and formation of these radioactive atoms into an ionic beam for study is an entire field of research carried out at many laboratories throughout the world. The first isotope separator was developed at the Copenhagen Cyclotron by Bohr and co-workers using the principle of electromagnetic separation. Today, there are many laboratories around the world which supply beams of radioactive ions for use. Arguably the principal '''Isotope Separator On-Line (ISOL)''' is ISOLDE at CERN,<ref>http://isolde.web.cern.ch/ISOLDE/</ref> which is a joint European facility spread across the Franco-Swiss border near the city of Geneva. This laboratory uses mainly proton spallation of uranium carbide targets to produce a wide range of radioactive fission fragments that are not found naturally on earth. During spallation (bombardment with high energy protons), a uranium carbide target is heated to several thousand degrees so that radioactive atoms produced in the nuclear reaction are released. Once out of the target, the vapour of radioactive atoms travels to an ionizer cavity. This ionizer cavity is a thin tube made of a low [[work function]] metal allowing for collisions with the walls to liberate a single electron from a free atom ([[surface ionization]] effect). Once ionized, the radioactive species are accelerated by an electrostatic field and injected into an electromagnetic separator. As ions entering the separator are of approximately equal energy, those ions with a smaller mass will be deflected by the magnetic field by a greater amount than those with a heavier mass. This differing radius of curvature allows for isobaric purification to take place. Once purified isobarically, the ion beam is then sent to the individual experiments. In order to increase the purity of the isobaric beam, laser ionization can take place inside the ionizer cavity to selectively ionize a single element chain of interest. At CERN, this device is called the Resonance Ionization Laser Ion Source (RILIS). Currently over 60% of all experiments opt to use the RILIS to increase the purity of radioactive beams.
 
===Beam production capability of ISOL facilities===
As the production of radioactive atoms by the ISOL technique depends on the free atom chemistry of the element to be studied, there are certain beams which cannot be produced by simple proton bombardment of thick actinide targets. [[Refractory]] metals such as tungsten and rhenium do not emerge from the target even at high temperatures due to their low vapour pressure. In order to produce these types of beams, a thin target is required. The Ion Guide Isotope Separator On Line (IGISOL) technique was developed in 1981 at the University of Jyvaskyla [[cyclotron]] laboratory in [[Finland]].<ref>http://www.jyu.fi/science/laitokset/fysiikka/en/research/accelerator/igisol</ref> In this technique, a thin uranium target is bombarded with protons and nuclear reaction products recoil out of the target in a charged state. The recoils are stopped in a gas cell and then exit through a small hole in the side of the cell where they are accelerated electrostatically and injected into a mass separator. This method of production and extraction takes place on a shorter timescale compared to the standard ISOL technique and isotopes with short half-lives (sub millisecond) can be studied using an IGISOL. An IGISOL has also been combined with a laser ion source at the Leuven Isotope Separator On Line (LISOL) in Belgium.<ref>http://fys.kuleuven.be/iks/lisol/equipment/equipment.htm</ref> Thin target sources generally provide significantly lower quantities of radioactive ions than thick target sources and this is their main drawback.
 
As experimental nuclear physics progresses, it is becoming more and more important to study the most exotic of radioactive nuclei. In order to do so, more inventive techniques are required to create nuclei with extreme proton/neutron ratios. An alternative to the ISOL techniques described here is that of fragmentation beams, where the radioactive ions are produced by fragmentation reactions on a fast beam of stable ions impinging on a thin target (usually of beryllium atoms). This technique is used, for example, at the [[National Superconducting Cyclotron Laboratory]] (NSCL) at Michigan State University and at the [[Radioactive Isotope Beam Factory]] (RIBF) at [[RIKEN]], in Japan.
 
== References ==
{{Reflist}}
 
==External links==
* [http://emsp.em.doe.gov/EMSPprojects1996_2002/completed/55103.pdf Utilization of kinetic isotope effects for the concentration of tritium], GM Brown, TJ Meyer et al., 2001.
* [http://www.fas.org/nuke/intro/nuke/uranium.htm Uranium Production]
* [http://world-nuclear.org/info/inf28.html Uranium Enrichment] from the World Nuclear Association
* [http://alsos.wlu.edu/qsearch.aspx?browse=science/Electromagnetic+Separation Annotated bibliography on electromagnetic separation of uranium isotopes form the Alsos Digital Library]
 
[[Category:Isotope separation| ]]

Latest revision as of 01:16, 4 January 2015

The author's name is Evon. Debt collecting the place I earn an income but I've already tried for another a specific. One of her favorite hobbies is to ride horses and she'd never stop. California will be the place she loves most but she needs to keep because of her family. If you for you to find out more the look at my website: http://ppir.at/stoya80387

Here is my website: stoya