Discriminative model: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Ancechu
 
Line 1: Line 1:
In [[physics]] and [[mathematics]], the '''solid harmonics''' are solutions of the [[Laplace equation]] in [[spherical polar coordinates]]. There are two kinds: the ''regular solid harmonics'' <math>R^m_\ell(\mathbf{r})</math>, which vanish at the origin and the ''irregular solid harmonics'' <math>I^m_{\ell}(\mathbf{r})</math>, which are singular at the origin. Both sets of functions play an important role in [[potential theory]], and are obtained by rescaling [[spherical harmonics]] appropriately:
I would like to introduce myself to you, I am Andrew and my wife doesn't like it at all. Alaska is the only location I've been residing in but now I'm considering other options. To play lacross is some thing I really appreciate performing. Invoicing is my occupation.<br><br>Also visit my web page ... [http://koreanyelp.com/index.php?document_srl=1798&mid=SchoolNews psychic readings]
:<math>
R^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}}\; r^\ell Y^m_{\ell}(\theta,\varphi)
</math>
:<math>
I^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \; \frac{ Y^m_{\ell}(\theta,\varphi)}{r^{\ell+1}}
</math>
 
== Derivation, relation to spherical harmonics ==
Introducing ''r'', θ, and φ for the spherical polar coordinates of the 3-vector '''r''', we can write the Laplace equation  in the following form
:<math> \nabla^2\Phi(\mathbf{r}) =  \left(\frac{1}{r} \frac{\partial^2}{\partial r^2}r - \frac{L^2}{\hbar^2 r^2}\right)\Phi(\mathbf{r}) = 0 , \qquad \mathbf{r} \ne \mathbf{0},
</math>
where ''L''<sup>2</sup> is the square of the [[angular momentum operator]],
:<math> \mathbf{L} = -i\hbar\, (\mathbf{r} \times \mathbf{\nabla}) .
</math>
 
It is [[Angular momentum#Relation to spherical harmonics|known]] that [[spherical harmonics]] Y<sup>m</sup><sub>l</sub>  are eigenfunctions of ''L''<sup>2</sup>:
:<math>
L^2 Y^m_{\ell}\equiv \left[ L^2_x +L^2_y+L^2_z\right]Y^m_{\ell}  = \hbar^2 \ell(\ell+1) Y^m_{\ell}.
</math>
 
Substitution of Φ('''r''') = ''F''(''r'') Y<sup>m</sup><sub>l</sub> into the Laplace equation gives, after dividing out the spherical harmonic function, the following  radial equation and its general solution,
 
:<math>
\frac{1}{r}\frac{\partial^2}{\partial r^2}r F(r) = \frac{\ell(\ell+1)}{r^2} F(r)
\Longrightarrow F(r) = A r^\ell + B r^{-\ell-1}.
</math>
 
The particular solutions of the total Laplace equation are '''regular solid harmonics''':
:<math>
R^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}}\; r^\ell Y^m_{\ell}(\theta,\varphi),
</math>
and  '''irregular solid harmonics''':
:<math>
I^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \; \frac{ Y^m_{\ell}(\theta,\varphi)}{r^{\ell+1}} .
</math>
 
===Racah's normalization===
[[Giulio Racah|Racah]]'s normalization (also known as Schmidt's semi-normalization) is applied to both functions
:<math>
\int_{0}^{\pi}\sin\theta\, d\theta \int_0^{2\pi} d\varphi\; R^m_{\ell}(\mathbf{r})^*\; R^m_{\ell}(\mathbf{r})
=  \frac{4\pi}{2\ell+1} r^{2\ell}
</math>
(and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations.
 
==Addition theorems==
The translation of the regular solid harmonic gives a finite expansion,
:<math> R^m_\ell(\mathbf{r}+\mathbf{a}) = \sum_{\lambda=0}^\ell\binom{2\ell}{2\lambda}^{1/2} \sum_{\mu=-\lambda}^\lambda R^\mu_{\lambda}(\mathbf{r}) R^{m-\mu}_{\ell-\lambda}(\mathbf{a})\;
\langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle,
</math>
where the [[Clebsch-Gordan coefficient]] is given by
:<math>
\langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle
= \binom{\ell+m}{\lambda+\mu}^{1/2} \binom{\ell-m}{\lambda-\mu}^{1/2} \binom{2\ell}{2\lambda}^{-1/2}.
</math>
 
The similar expansion for irregular solid harmonics gives an infinite series,
:<math> I^m_\ell(\mathbf{r}+\mathbf{a}) = \sum_{\lambda=0}^\infty\binom{2\ell+2\lambda+1}{2\lambda}^{1/2} \sum_{\mu=-\lambda}^\lambda R^\mu_{\lambda}(\mathbf{r}) I^{m-\mu}_{\ell+\lambda}(\mathbf{a})\;
\langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle
</math>
with <math> |r| \le |a|\,</math>. The quantity between pointed brackets is again a [[Clebsch-Gordan coefficient]],
:<math>
\langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle
= (-1)^{\lambda+\mu}\binom{\ell+\lambda-m+\mu}{\lambda+\mu}^{1/2} \binom{\ell+\lambda+m-\mu}{\lambda-\mu}^{1/2}
\binom{2\ell+2\lambda+1}{2\lambda}^{-1/2}.
</math>
 
===References===
 
The addition theorems were  proved in different manners by many different workers. See for two different proofs for example:
* R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. '''10''', p.&nbsp;1261 (1977)
* M. J. Caola, J. Phys. A: Math. Gen. Vol. '''11''', p.&nbsp;L23 (1978)
 
==Real form==
{{Unreferenced section|date=October 2010}}
By a simple linear combination of solid harmonics of ±''m'' these functions are transformed into real functions. The real regular solid harmonics,  expressed in cartesian  coordinates, are homogeneous polynomials of order ''l'' in ''x'', ''y'', ''z''. The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical [[atomic orbital]]s and real [[multipole moments]]. The explicit cartesian expression of the real regular harmonics will now be derived.
 
===Linear combination ===
 
We write in agreement with the earlier definition
:<math>
R_\ell^m(r,\theta,\varphi) = (-1)^{(m+|m|)/2}\; r^\ell \;\Theta_{\ell}^{|m|} (\cos\theta)
e^{im\varphi}, \qquad -\ell \le m \le \ell,
</math>
with
:<math>
\Theta_{\ell}^m (\cos\theta) \equiv \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \,\sin^m\theta\, \frac{d^m P_\ell(\cos\theta)}{d\cos^m\theta}, \qquad m\ge 0,
</math>
where <math> P_\ell(\cos\theta)</math> is a [[Legendre polynomial]] of order ''l''.
The ''m'' dependent phase is known as the [[Spherical harmonics#Condon–Shortley phase|Condon-Shortley phase]].
 
The following expression defines the real regular solid harmonics:
:<math>
\begin{pmatrix}
C_\ell^{m} \\
S_\ell^{m}
\end{pmatrix}
\equiv \sqrt{2} \; r^\ell \; \Theta^{m}_\ell
\begin{pmatrix}
\cos m\varphi\\ \sin m\varphi
\end{pmatrix}
=
\frac{1}{\sqrt{2}}
\begin{pmatrix}
(-1)^m  & \quad 1 \\
-(-1)^m i & \quad i
\end{pmatrix}
\begin{pmatrix}
R_\ell^{m} \\
R_\ell^{-m}
\end{pmatrix},
\qquad m > 0.
</math>
and for ''m'' = 0:
:<math>
C_\ell^{0} \equiv R_\ell^{0} .
</math>
Since the transformation is by a [[unitary matrix]] the normalization of the real and the complex solid harmonics is the same.
 
=== ''z''-dependent part ===
 
Upon writing ''u'' = cos &theta; the ''m''th derivative of the Legendre polynomial can be written as the following expansion in ''u''
:<math>
\frac{d^m P_\ell(u)}{du^m} =
\sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} \gamma^{(m)}_{\ell k}\; u^{\ell-2k-m}
</math>
with
:<math>
\gamma^{(m)}_{\ell k} = (-1)^k 2^{-\ell} \binom{\ell}{k}\binom{2\ell-2k}{\ell} \frac{(\ell-2k)!}{(\ell-2k-m)!}.
</math>
Since ''z'' = ''r'' cos&theta; it follows that this derivative, times an appropriate power of ''r'', is a simple polynomial in ''z'',
:<math>
\Pi^m_\ell(z)\equiv
r^{\ell-m} \frac{d^m P_\ell(u)}{du^m} =
\sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} \gamma^{(m)}_{\ell k}\; r^{2k}\; z^{\ell-2k-m}.
</math>
 
=== (''x'',''y'')-dependent part ===
 
Consider next, recalling that ''x'' = ''r'' sin&theta;cos&phi; and ''y'' = ''r'' sinθsinφ,
:<math>
r^m \sin^m\theta \cos m\varphi = \frac{1}{2} \left[  (r \sin\theta e^{i\varphi})^m
+ (r \sin\theta e^{-i\varphi})^m \right] =
\frac{1}{2} \left[  (x+iy)^m + (x-iy)^m \right]
</math>
Likewise
:<math>
r^m \sin^m\theta \sin m\varphi = \frac{1}{2i} \left[  (r \sin\theta e^{i\varphi})^m
- (r \sin\theta e^{-i\varphi})^m \right] =
\frac{1}{2i} \left[  (x+iy)^m - (x-iy)^m \right].
</math>
Further
:<math>
A_m(x,y) \equiv
\frac{1}{2} \left[  (x+iy)^m + (x-iy)^m \right]= \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \cos (m-p) \frac{\pi}{2}
</math>
and
:<math>
B_m(x,y) \equiv
\frac{1}{2i} \left[  (x+iy)^m - (x-iy)^m \right]= \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \sin (m-p) \frac{\pi}{2}.
</math>
 
===In total ===
 
:<math>
C^m_\ell(x,y,z) = \left[\frac{(2-\delta_{m0}) (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z)\;A_m(x,y),\qquad m=0,1, \ldots,\ell
</math>
:<math>
S^m_\ell(x,y,z) = \left[\frac{2 (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z)\;B_m(x,y)
,\qquad m=1,2,\ldots,\ell.
</math>
 
=== List of lowest functions ===
 
We list explicitly the lowest functions up to and including ''l = 5'' .
Here <math>\bar{\Pi}^m_\ell(z) \equiv \left[\tfrac{(2-\delta_{m0}) (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z) .
</math>
----
:<math>
\begin{align}
\bar{\Pi}^0_0 & = 1  &
      \bar{\Pi}^1_3 & = \frac{1}{4}\sqrt{6}(5z^2-r^2)  &
            \bar{\Pi}^4_4 & = \frac{1}{8}\sqrt{35}  \\
\bar{\Pi}^0_1 & = z  &
      \bar{\Pi}^2_3 & = \frac{1}{2}\sqrt{15}\; z    &
            \bar{\Pi}^0_5 & = \frac{1}{8}z(63z^4-70z^2r^2+15r^4) \\
\bar{\Pi}^1_1 & = 1  &
      \bar{\Pi}^3_3 & = \frac{1}{4}\sqrt{10}        &
            \bar{\Pi}^1_5 & = \frac{1}{8}\sqrt{15} (21z^4-14z^2r^2+r^4) \\
\bar{\Pi}^0_2 & = \frac{1}{2}(3z^2-r^2) &
      \bar{\Pi}^0_4 & = \frac{1}{8}(35 z^4-30 r^2 z^2 +3r^4 ) &
            \bar{\Pi}^2_5 & = \frac{1}{4}\sqrt{105}(3z^2-r^2)z \\
\bar{\Pi}^1_2 & = \sqrt{3}z &
      \bar{\Pi}^1_4 & = \frac{\sqrt{10}}{4} z(7z^2-3r^2) &
            \bar{\Pi}^3_5 & = \frac{1}{16}\sqrt{70} (9z^2-r^2) \\
\bar{\Pi}^2_2 & = \frac{1}{2}\sqrt{3}  &
      \bar{\Pi}^2_4 & = \frac{1}{4}\sqrt{5}(7z^2-r^2)  &
            \bar{\Pi}^4_5 & = \frac{3}{8}\sqrt{35} z  \\
\bar{\Pi}^0_3 & = \frac{1}{2} z(5z^2-3r^2) &
      \bar{\Pi}^3_4 & = \frac{1}{4}\sqrt{70}\;z  &
            \bar{\Pi}^5_5 & = \frac{3}{16}\sqrt{14} \\
\end{align}
</math>
---- 
The lowest functions <math>A_m(x,y)\,</math> and <math> B_m(x,y)\,</math> are:
 
::::{| class="wikitable"
|-
! ''m''
!  ''A''<sub>m</sub>
!  ''B''<sub>m</sub>
|-
| 0
| <math>1\,</math>
| <math>0\,</math>
|-
| 1
| <math>x\,</math>
| <math>y\,</math>
|-
| 2
| <math>x^2-y^2\,</math>
| <math>2xy\,</math>
|-
| 3
| <math>x^3-3xy^2\,</math>
| <math> 3x^2y -y^3\, </math>
|-
| 4
| <math>x^4 - 6x^2 y^2 +y^4\,</math>
| <math>4x^3y-4xy^3\,</math>
|-
| 5
| <math>x^5-10x^3y^2+ 5xy^4\, </math>
| <math>5x^4y -10x^2y^3+y^5\, </math>
|}
 
 
 
{{DEFAULTSORT:Solid Harmonics}}
[[Category:Partial differential equations]]
[[Category:Special hypergeometric functions]]
[[Category:Atomic physics]]
[[Category:Fourier analysis]]
[[Category:Rotational symmetry]]

Latest revision as of 19:32, 11 February 2014

I would like to introduce myself to you, I am Andrew and my wife doesn't like it at all. Alaska is the only location I've been residing in but now I'm considering other options. To play lacross is some thing I really appreciate performing. Invoicing is my occupation.

Also visit my web page ... psychic readings