Gebhart factor: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>Bgwhite
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (9866)
 
Line 1: Line 1:
The Google Ride team�aforementioned today that it is pealing out�an natural process watercourse to assistance you monitor lizard changes to your files and folders. A New ?? button that appears at the height powerful turning point of the sieve gives you access to the stream, which notes actions taken on files and folders in your Drive, and WHO took them. Edits, comments, fresh files, changed filing cabinet names and more will wholly at once appear indoors the stream.
The '''inventor's paradox''' is a phenomenon that occurs in seeking a solution to a given problem. Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought after solution. The ''inventor's paradox''  has been used to describe phenomena in mathematics, programming, and logic, as well as other areas that involve critical thinking.


The melodic theme is zip new�?? Dropbox and Package throw offered like [http://Www.google.Co.uk/search?hl=en&gl=us&tbm=nws&q=activeness+streams&gs_l=news activeness streams] for rather more or less meter ?? simply it wish in all probability be receive news show to anyone World Health Organization collaborates [http://wordpress.org/search/victimization+Drive victimization Drive].<br><br>If you are you looking for more about [http://batuiti.com/shop/smartwatch/smart-bracelet-watch-for-iphone-android-phones-bluetooth-anti-theft-smart-watch-wristwatch/ smart bracelet] stop by our own web-page.
==History==
In the book ''[[How to Solve It]]'', [[George Pólya]] introduces what he defines as the inventor's paradox:
{{Quote|The more ambitious plan may have more chances of success...provided it is not based on a mere pretension but on some vision of the things beyond those immediately present.|[[George Pólya]]|[[How to Solve It]].<ref>Pólya, p. 121.</ref>}}
 
or, in other words, to solve what you desire, you may have to solve more than what you actually want to in order to get a properly working flow of information.<ref name=Barwise41/>
 
When solving a problem, the natural inclination typically is to remove as much excessive variability and produce limitations on the subject at hand. Doing this can create unforeseen and intrinsically awkward parameters.<ref name=tate110>Tate, et al., p. 110</ref> The goal is to find elegant and relatively simple solutions to broader problems, allowing for the ability to focus on the specific portion you were initially concerned with.<ref name=tate111>Tate, et al., p. 111.</ref>
 
There lies the ''inventor's paradox'', that it is often significantly easier to find a general solution than a more specific one, which may naturally have a simpler algorithm and cleaner design, and typically can take less time to solve in comparison with a particular problem.<ref name=tate110/>
 
==Examples==
===Mathematics===
The sum of numbers sequentially from 1-99:
:<math>1 + 2 + 3 + ... + 97 + 98 + 99\, </math>
This process, although not impossible to do in your head, can prove to be difficult for most. However, the ability to generalize the problem exists, in this case by reducing the sequence to:
:<math>(1 + 99) + (2 + 98) + (3 + 97) + ... + (48 + 52) + (49 + 51) + (50) \,</math>
In this form, the example can be solved by most without the use of a calculator.<ref name=tate110/>
 
Although appearing in several applications, it can be easiest to explain through inspection of a relatively simple mathematical sequence.<ref name=Barwise40>Barwise p. 40.</ref>
:<math>1 + 3 = 4\, </math>
:<math>1 + 3 + 5 = 9\, </math>
 
and further along in the sequence:
 
:<math>1 + 3 + 5 + 7 + 9 = 25\, </math>
 
In allowing the sequence to expand to a point where the sum cannot be found quickly, we can simplify by finding that the sum of consecutive odd numbers follows:<ref name=Barwise41>Barwise p. 41.</ref>
 
:<math>\sum_{k=1}^{n}\mathbf(2k-1) = n^2.</math>
 
===Programming===
As an example in applying the same logic, it may be harder to solve a 25-case problem than it would be to solve an n-case problem, and then apply it to the case where n=25.<ref>Bentley (2000), p. 29.</ref>
 
==Applications==
This paradox has applications in writing efficient programs. It is intuitive to write programs that are specialized, but in practice it can become easier to develop more generalized procedures.<ref>Bentley (1982), p. 79.</ref> According to Bruce Tate, some of the most successful frameworks are simple generalizations of complex problems, and he says that [[Visual Basic]], the Internet, and [[Apache HTTP Server|Apache web servers]] plug-ins are primary examples of such practice.<ref name=tate111/> In the investigation of the semantics of language, many logicians find themselves facing this paradox. An example of application can been seen in the inherent concern of logicians with the conditions of truth within a sentence, and not, in fact, with the conditions under which a sentence can be truly asserted.<ref name=Barwise41/>
Additionally, the paradox has been shown to have applications in industry.<ref name=tate110/>
 
==Citations==
{{reflist}}
 
==Sources==
*{{cite book|last=Barwise|first=Jon|title=The situation in logic|year=1989|publisher=Center for the Study of Language (CSLI)|isbn=0-937073-33-4|chapter=Situations in language and logic|pages=327}}
*{{cite book|last=Bentley|first=Jon Louis|title=Writing efficient programs|year=1982|publisher=Prentice-Hall|pages=170|isbn=0-13-970251-2}}
*{{cite book|last=Bentley|first=Jon Louis|title=Programming Pearls|year=2000|publisher=Addison-Wesley|isbn=0-201-10331-1|pages=239}}
*{{cite book|last=Pólya|first=Gyorgy|author-link = George Pólya|title=[[How to Solve It|How to solve it: a new aspect of mathematic method]]|year=1957|publisher=Doubleday|isbn=0-691-08097-6|pages=253}}
*{{cite book|last=Tate|first=Bruce|title=Better, faster, lighter Java  |year=2004|publisher=O'Reilly Media, Inc|isbn=0-596-00676-4|pages=243|coauthors=Gehtland, Justin|chapter=Allow for Extension}}
*{{cite book|last=Welborn|first=Ralph|title=The Jericho principle: how companies use strategic collaboration to find new sources of value|year=2003|publisher=John Wiley and Sons|isbn=0-471-32772-7|pages=276|coauthors= Kasten, Vincent A.|chapter=Collaborative DNA: Exploring the Dynamics}}
 
== See also ==
* [[Abstraction]]
* [[Generalization]]
 
[[Category:Paradoxes]]
[[Category:Critical thinking]]

Latest revision as of 10:12, 19 January 2014

The inventor's paradox is a phenomenon that occurs in seeking a solution to a given problem. Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought after solution. The inventor's paradox has been used to describe phenomena in mathematics, programming, and logic, as well as other areas that involve critical thinking.

History

In the book How to Solve It, George Pólya introduces what he defines as the inventor's paradox: 31 year-old Systems Analyst Bud from Deep River, spends time with pursuits for instance r/c cars, property developers new condo in singapore singapore and books. Last month just traveled to Orkhon Valley Cultural Landscape.

or, in other words, to solve what you desire, you may have to solve more than what you actually want to in order to get a properly working flow of information.[1]

When solving a problem, the natural inclination typically is to remove as much excessive variability and produce limitations on the subject at hand. Doing this can create unforeseen and intrinsically awkward parameters.[2] The goal is to find elegant and relatively simple solutions to broader problems, allowing for the ability to focus on the specific portion you were initially concerned with.[3]

There lies the inventor's paradox, that it is often significantly easier to find a general solution than a more specific one, which may naturally have a simpler algorithm and cleaner design, and typically can take less time to solve in comparison with a particular problem.[2]

Examples

Mathematics

The sum of numbers sequentially from 1-99:

This process, although not impossible to do in your head, can prove to be difficult for most. However, the ability to generalize the problem exists, in this case by reducing the sequence to:

In this form, the example can be solved by most without the use of a calculator.[2]

Although appearing in several applications, it can be easiest to explain through inspection of a relatively simple mathematical sequence.[4]

and further along in the sequence:

In allowing the sequence to expand to a point where the sum cannot be found quickly, we can simplify by finding that the sum of consecutive odd numbers follows:[1]

Programming

As an example in applying the same logic, it may be harder to solve a 25-case problem than it would be to solve an n-case problem, and then apply it to the case where n=25.[5]

Applications

This paradox has applications in writing efficient programs. It is intuitive to write programs that are specialized, but in practice it can become easier to develop more generalized procedures.[6] According to Bruce Tate, some of the most successful frameworks are simple generalizations of complex problems, and he says that Visual Basic, the Internet, and Apache web servers plug-ins are primary examples of such practice.[3] In the investigation of the semantics of language, many logicians find themselves facing this paradox. An example of application can been seen in the inherent concern of logicians with the conditions of truth within a sentence, and not, in fact, with the conditions under which a sentence can be truly asserted.[1] Additionally, the paradox has been shown to have applications in industry.[2]

Citations

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Sources

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

See also

  1. 1.0 1.1 1.2 Barwise p. 41.
  2. 2.0 2.1 2.2 2.3 Tate, et al., p. 110
  3. 3.0 3.1 Tate, et al., p. 111.
  4. Barwise p. 40.
  5. Bentley (2000), p. 29.
  6. Bentley (1982), p. 79.