Irreducible component: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>D.Lazard
→‎In algebraic geometry: Rm unnecessary notation + wikilink to primary decomposition
en>D.Lazard
→‎Examples: clarification (see talk page)
 
Line 1: Line 1:
{{Probability distribution|
Hello and welcome. My name is Irwin and I totally dig that title. My family members lives in Minnesota and my family loves it. What I love performing is performing ceramics but I haven't made a dime with it. For years he's been working as a receptionist.<br><br>Feel free to visit my web blog at home std testing ([http://www.animecontent.com/blog/349119 click through the following website page])
  name      =Raised cosine|
  type      =density|
  pdf_image  =[[Image:RCosine distribution PDF.png|325px|Plot of the raised cosine PDF]]<br /><small></small>||
  cdf_image  =[[Image:RCosine distribution CDF.png|325px|Plot of the raised cosine CDF]]<br /><small></small>|
  parameters =<math>\mu\,</math>([[real number|real]])<br>
<math>s>0\,</math>([[real number|real]])|
  support    =<math>x \in [\mu-s,\mu+s]\,</math>|
  pdf        =<math>\frac{1}{2s}
\left[1+\cos\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]\,</math>|
  cdf        =<math>\frac{1}{2}\left[1\!+\!\frac{x\!-\!\mu}{s}
\!+\!\frac{1}{\pi}\sin\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]</math>|
  mean      =<math>\mu\,</math>|
  median    =<math>\mu\,</math>|
  mode      =<math>\mu\,</math>|
  variance  =<math>s^2\left(\frac{1}{3}-\frac{2}{\pi^2}\right)\,</math>|
  skewness  =<math>0\,</math>|
  kurtosis  =<math>\frac{6(90-\pi^4)}{5(\pi^2-6)^2}\,</math>|
  entropy    =|
  mgf        =<math>\frac{\pi^2\sinh(s t)}{st(\pi^2+s^2 t^2)}\,e^{\mu t}</math>|
  char      =<math>\frac{\pi^2\sin(s t)}{st(\pi^2-s^2 t^2)}\,e^{i\mu t}</math>|
}}
In [[probability theory]] and [[statistics]], the '''raised cosine distribution''' is a continuous [[probability distribution]] supported on the interval <math>[\mu-s,\mu+s]</math>. The [[probability density function]] is
 
:<math>f(x;\mu,s)=\frac{1}{2s}
\left[1+\cos\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]\,</math>
 
for <math>\mu-s \le x \le \mu+s</math> and zero otherwise. The cumulative distribution function is
 
:<math>F(x;\mu,s)=\frac{1}{2}\left[1\!+\!\frac{x\!-\!\mu}{s}
\!+\!\frac{1}{\pi}\sin\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]</math>
 
for <math>\mu-s \le x \le \mu+s</math> and zero for <math>x<\mu-s</math> and unity for <math>x>\mu+s</math>.
 
The [[moment (mathematics)|moments]] of the raised cosine distribution are somewhat complicated, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with <math>\mu=0</math> and <math>s=1</math>. Because the standard raised cosine distribution is an [[Even and odd functions|even function]], the odd moments are zero. The even moments are given by:
 
:<math>E(x^{2n})=\frac{1}{2}\int_{-1}^1  [1+\cos(x\pi)]x^{2n}\,dx </math>
:<math>= \frac{1}{n\!+\!1}+\frac{1}{1\!+\!2n}\,_1F_2
\left(n\!+\!\frac{1}{2};\frac{1}{2},n\!+\!\frac{3}{2};\frac{-\pi^2}{4}\right)</math>
 
where <math>\,_1F_2</math> is a [[generalized hypergeometric function]].
 
==See also==
* [[Hann function]]
 
== References ==
*{{Cite web
| author    = Horst Rinne
| url        = http://geb.uni-giessen.de/geb/volltexte/2010/7607/pdf/RinneHorst_LocationScale_2010.pdf
| title      = Location-Scale Distributions - Linear Estimation and Probability Plotting Using MATLAB
| year      = 2010
| page       = 116
| accessdate = 2012-11-16
}}
 
{{ProbDistributions|continuous-bounded}}
 
{{DEFAULTSORT:Raised Cosine Distribution}}
[[Category:Continuous distributions]]
[[Category:Probability distributions]]

Latest revision as of 14:46, 8 February 2014

Hello and welcome. My name is Irwin and I totally dig that title. My family members lives in Minnesota and my family loves it. What I love performing is performing ceramics but I haven't made a dime with it. For years he's been working as a receptionist.

Feel free to visit my web blog at home std testing (click through the following website page)