K3 surface: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Myasuda
m →‎Properties: added missing diacritic
 
en>Broido
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Expert-subject|geology|date=September 2010}}
I am Allan from Moholm. I am learning to play the Trumpet. Other hobbies are Racquetball.<br><br>My homepage; Hostgator Coupons ([http://dawonls.dothome.co.kr/db/?document_srl=265300 http://dawonls.dothome.co.kr/db/?document_srl=265300])
 
'''Abiogenic petroleum origin''' is a [[hypothesis]] that was proposed as an alternative mechanism of [[Petroleum#Formation|petroleum origin]]. According to the abiogenic hypothesis, [[petroleum]] was formed from deep carbon deposits, perhaps dating to the [[formation and evolution of the solar system|formation of the Earth]]. Supporters of the abiogenic hypothesis suggest that a great deal more petroleum exists on Earth than commonly thought, and that petroleum may originate from carbon-bearing fluids that migrate upward from the [[mantle (geology)|mantle]]. The presence of huge amounts of [[methane]] on Saturn's moon Titan and in the atmospheres of Jupiter, Saturn, Uranus and Neptune is cited<ref name=glasby2006/> as evidence of the formation of [[hydrocarbon]]s without biology.<ref name="gold1999">{{cite book
| author=Gold, Thomas
| year=1999
| title=The deep, hot biosphere
| publisher=Copernicus Books
|isbn=0-387-98546-8
}}</ref>
 
The hypothesis was first proposed by [[Georg Agricola]] in the 16th century and various abiogenic hypotheses were proposed in the 19th century, most notably by Prussian geographer [[Alexander von Humboldt]], the Russian chemist [[Dmitri Mendeleev]] and the French chemist [[Marcellin Berthelot]]. Abiogenic hypotheses were revived in the last half of the 20th century by Soviet scientists who had little influence outside the Soviet Union because most of their research was published in Russian. The hypothesis was re-defined and made popular in the West by [[Thomas Gold]] who published all his research in English.<ref name=glasby2006/>
 
Although the abiogenic hypothesis was accepted by many geologists in the former Soviet Union, it fell out of favor at the end of the 20th century because it never made any useful prediction for the discovery of oil deposits.<ref name=glasby2006/> The abiogenic origin of petroleum has also recently been reviewed in detail by Glasby, who raises a number of objections, including that there is no direct evidence to date of abiogenic ''petroleum'' (liquid crude oil and long-chain hydrocarbon compounds).<ref name=glasby2006>{{cite journal
|author= Glasby GP
|year=2006
|title= Abiogenic origin of hydrocarbons: an historical overview
|journal= Resour Geol
|volume=56
|issue=1
|pages=83–96
|url=http://static.scribd.com/docs/j79lhbgbjbqrb.pdf
|format=PDF
|accessdate=2008-01-29
|doi= 10.1111/j.1751-3928.2006.tb00271.x
}}</ref> Geologists now consider the abiogenic formation of petroleum scientifically unsupported, and they agree that petroleum is formed from organic material.<ref name=glasby2006>{{cite journal |last= Glasby |first=Geoffrey P. |year=2006 |title= Abiogenic origin of hydrocarbons: an historical overview |journal= Resource Geology |volume=56 |issue=1 |pages=83–96 |url=http://static.scribd.com/docs/j79lhbgbjbqrb.pdf |format=PDF |accessdate=2008-02-17 |doi= 10.1111/j.1751-3928.2006.tb00271.x}}</ref> However, some argue that the abiogenic theory cannot be dismissed yet because the mainstream theory still has to be established conclusively.<ref name=speight>{{citation |title= The Chemistry and Technology of Petroleum, Fourth Edition |volume= 114 |series= Chemical Industries |author= James G. Speight |edition= 4, ilustraded |publisher= CRC Press |year= 2006 |isbn= 9780849390678 |page= 50 |url= http://books.google.es/books?id=ymL2S9RWzx4C&pg=PA50&lpg=PA50&dq=abiogenic+petroleum&source=bl&ots=busjkpMXUm&sig=-9aMCBIUkD-0v9MYN1jEMZa7iOo&hl=en&sa=X&ei=Q_F5UL7NIc-4hAf32YDYAQ&redir_esc=y |quote= However, it is now generally accepted, but not conclusively proven, that petroleum formation predominantly arises from the decay of organic matter in the earth. (...) Nevertheless, alternative theories should not be dismissed until it can be conclusively established that petroleum formation is due to one particular aspect of geochemistry. }}</ref>
 
It has been recently discovered that [[thermophilic]] bacteria, in the sea bottom and in cooling magma, produce [[methane]] and hydrocarbon gases,<ref>Lollar, Sherwood et al. 2002. Abiogenic formation of [[alkane]]s in the Earth's crust as a minor source for global hydrocarbon reservoirs. ''Nature'', '''416''', pp522-524. [http://adsabs.harvard.edu/abs/2002Natur.416..522S Abstract]
</ref><ref name="lollar2006">{{cite journal
| author = B. Sherwood Lollar
| coauthors = G. Lacrampe-Couloume, et al.
|date=February 2006
| title = Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface
| journal = Chemical Geology
| volume = 226
| issue = 3–4
| pages = 328–339
| doi = 10.1016/j.chemgeo.2005.09.027
}}</ref> but studies indicate they are not produced in commercially significant quantities (i.e. in extracted hydrocarbon gases, the median abiogenic hydrocarbon content is 0.02%, or 1 part in 5,000).<ref>{{Cite journal |title= Abiogenic hydrocarbons and mantle helium in oil and gas fields |author= Jenden, P.D. ; Kaplan, I.R. ; Hilton, D.R. ; Craig, H. |date= 1 January 1993 |journal= [[United States Geological Survey]] |volume= 1570 |url= http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7052010|postscript=. }} Document #7052010 in Energy Citations Database (ECD)</ref>
 
==History of the abiogenic hypothesis==
The abiogenic hypothesis is usually traced to the early part of the 19th century. At the time, the chemical nature of petroleum was not known.
 
[[Alexander von Humboldt]] was the first to propose an inorganic abiogenic hypothesis for petroleum formation after he observed petroleum springs in the Bay of Cumaux ([[Cumaná]]) on the northeast coast of [[Venezuela]].<ref>[http://books.google.com/books?id=IQkDAAAAIAAJ&pg=PA93&lpg=PA93 Sadtler, The Genesis and Chemical Relations of Petroleum and Natural Gas, 1897]</ref>  In 1804 he is quoted as saying, "petroleum is the product of a distillation from great depth and issues from the primitive rocks beneath which the forces of all volcanic action lie."  [[Abraham Gottlob Werner]] and the proponents of [[neptunism]] in the 18th century believed [[basalt]]ic [[Sill (geology)|sills]] to be solidified oils or bitumen. While these notions have been proven unfounded, the basic idea that petroleum is associated with magmatism persisted. Other prominent proponents of what would become the abiogenic hypothesis included [[Mendeleev]]<ref>Mendeleev, D., 1877. L'origine du petrole. Revue Scientifique, 2e Ser., VIII, p. 409-416.</ref> and [[Marcellin Berthelot|Berthelot]].
 
Russian geologist [[Nikolai Kudryavtsev|Nikolai Alexandrovitch Kudryavtsev]] proposed the modern abiotic hypothesis of petroleum in 1951. On the basis of his analysis of the [[Athabasca Oil Sands]] in [[Alberta, Canada]], he concluded that no [[source rock|"source rocks"]] could form the enormous volume of hydrocarbons, and that therefore the most plausible explanation is abiotic deep petroleum. However, humic coals have since been proposed for the source rocks.<ref>"[http://web.archive.org/web/20110716145545/http://www.searchanddiscovery.com/documents/2004/stanton/index.htm Origin of the Lower Cretaceous Heavy Oils (“Tar Sands”) of Alberta]", Michael Stanton Search and Discovery Article #10071 (2004) Archived from [http://www.searchanddiscovery.com/documents/2004/stanton/index.htm the original] in July 16, 2011 (Search and Discovery is an online journal published by the [[American Association of Petroleum Geologists]])</ref>  Kudryavtsev's work was continued by [[Petr N. Kropotkin]], [[Vladimir B. Porfir'ev]], [[Emmanuil B. Chekaliuk]], Vladilen A. Krayushkin, [[Georgi E. Boyko]], [[Georgi I. Voitov]], [[Grygori N. Dolenko]], Iona V. Greenberg, Nikolai S. Beskrovny, and [[Victor F. Linetsky]].
 
Astronomer [[Thomas Gold]] was the most prominent proponent of the abiogenic hypothesis in the West until his death in 2004.<ref name=glasby2006/> More recently, Jack Kenney of Gas Resources Corporation has come to prominence.<ref name="kenney2">{{cite web| url = http://www.gasresources.net/ThrmcCnstrnts.htm| title = The Constraints of the Laws of Thermodynamics upon the Evolution of Hydrocarbons: The Prohibition of Hydrocarbon Genesis at Low Pressures.| accessdate = 2006-08-16| author = Kenney, J.F.| coauthors = I. K. Karpov I.K., Shnyukov Ac. Ye. F., Krayushkin V.A., Chebanenko I.I., Klochko V.P.| year = 2002| archiveurl= http://web.archive.org/web/20060927235602/http://www.gasresources.net/ThrmcCnstrnts.htm| archivedate= 27 September 2006 <!--DASHBot-->| deadurl= no}}</ref><ref name="kenney2001">{{cite journal | author=Kenney, J., Shnyukov, A., Krayushkin, V., Karpov, I., Kutcherov, V. and Plotnikova, I. | title= Dismissal of the claims of a biological connection for natural petroleum | journal=Energia | volume=22 | issue=3 | year=2001 | pages=26–34}} [http://www.gasresources.net/DisposalBioClaims.htm Article link]</ref><ref name="kenney2002">{{cite journal | author=Kenney, J., Kutcherov, V., Bendeliani, N. and Alekseev, V. | title= The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum | journal=Proceedings of the National Academy of Sciences of the United States of America | volume=99 | year=2002 | pages=10976–10981 | url=http://www.pnas.org/cgi/content/full/99/17/10976 | accessdate=2006-10-04 | doi=10.1073/pnas.172376899 | pmid= 12177438 | issue=17 | pmc=123195 |arxiv = physics/0505003 |bibcode = 2002PNAS...9910976K }}</ref>
 
==State of current research==
{{Main|Petroleum#Formation}}
The weight of evidence currently shows that petroleum is derived from ancient [[biomass]].<ref>Keith A. Kvenvolden "Organic geochemistry – A retrospective of its first 70 years" Organic Geochemistry 37 (2006) 1–11.  {{DOI|10.1016/j.orggeochem.2005.09.001}}</ref> However, it still has to be established conclusively, which means that alternative theories like abiogenic petroleum cannot be dismissed for now.<ref name=speight /> The initial evidence was based on the isolation of molecules from petroleum that closely resemble known biomolecules (Figure).
[[File:Treibs&Chlorophyll.png|thumb|350 px| center|Structure of a biomarker extracted from petroleum and simplified structure of [[chlorophyll]] a.]]
 
[[Petroleum geology|Petroleum geologists]] agree that oil originates from vast quantities of dead marine [[plankton]] or plant material that sank into the [[bay mud|mud]] of [[Littoral zone|shallow seas]].  Under the resulting [[hypoxia (environmental)|anaerobic conditions]], organic compounds remained in a [[Redox|reduced]] state where [[anaerobic organism|anaerobic bacteria]] converted the [[lipid]]s (fats, oils and waxes) into a waxy substance called [[kerogen]].
 
As the [[source rock]] was buried deeper, [[overburden pressure]] raised temperatures into the ''oil window'', between 80 and 180&nbsp;°C.  Most of the organic compounds degraded into the [[alkane|straight-chain hydrocarbons]] that comprise most of petroleum. This process is called the generation ''kitchen''.{{Citation needed|date=July 2009}} Once crude oil formed, it became very [[fluid dynamics|fluid]] and migrated upward through the [[stratum|rock strata]]. This process is called oil expulsion. Eventually it was either trapped in an [[oil reservoir]] or oil [[petroleum seep|escaped to the surface]] and was [[biodegradation|biodegraded]] by soil bacteria.
 
Oil buried deeper entered the "gas window" of more than 160&nbsp;°C and was converted into [[natural gas]] by [[cracking (chemistry)|thermal cracking]]. This gives the prediction that only [[natural gas field|unassociated gas]] and not oil will be found below a certain depth. At greater depths, even natural gas would be [[pyrolisis|pyrolyzed]].
 
A 2006 review article by Glasby presented arguments against the abiogenic origin of petroleum on a number of counts.<ref name=glasby2006/>
 
==Foundations of the hypotheses==
Within the mantle, carbon may exist as [[hydrocarbon]]s—chiefly [[methane]]—and as elemental carbon, carbon dioxide, and carbonates.<ref name="kenney2002" /> The abiotic hypothesis is that the full suite of hydrocarbons found in petroleum can be generated in the mantle by abiogenic processes,<ref name="kenney2002" /> and these hydrocarbons can migrate out of the mantle into the [[Crust (geology)|crust]] until they escape to the surface or are trapped by impermeable strata, forming petroleum reservoirs.
 
Abiogenic hypotheses reject the supposition that certain molecules found within petroleum, known as [[Biomarker (petroleum)|biomarkers]], are indicative of the biological origin of petroleum.  They contend that these molecules mostly come from microbes feeding on petroleum in its upward migration through the crust, that some of them are found in meteorites, which have presumably never contacted living material, and that some can be generated abiogenically by plausible reactions in petroleum.<ref name="kenney2001" />
 
The hypothesis is founded primarily upon: <!-- Comments are noting major theories rather than first sources; work in progress! -->
{| class="wikitable"
!Proponents
!Item
|-
| Gold
| The presence of methane on other planets, meteors, moons and comets<ref>{{cite journal | author=Hodgson, G. and Baker, B. | title=Evidence for porphyrins in the Orgueil meteorite | journal = Nature | volume=202 | year=1964 | issue=4928 | pages=125–131 | doi=10.1038/202125a0|bibcode = 1964Natur.202..125H }}</ref><ref>{{cite journal | author=Hodgson, G. and Baker, B. | title=Porphyrin abiogenesis from pyrole and formaldehyde under simulated geochemical conditions | journal=Nature | volume=216 | year=1964 | pages=29–32 | doi=10.1038/216029a0 | pmid=6050667 | issue=5110|bibcode = 1967Natur.216...29H }}</ref>
|-
| Gold, Kenney <!-- Gold: temp+pressure, and primordial -->
| Proposed mechanisms of abiotically chemically synthesizing hydrocarbons within the mantle<ref name="kenney2" /><ref name="kenney2001" /><ref name="kenney2002" />
|-
| Kudryavtsev, Gold
| Hydrocarbon-rich areas [[Kudryavtsev's Rule|tend to be hydrocarbon-rich]] at many different levels<ref name="gold1999"/>
|-
| Kudryavtsev, Gold
| Petroleum and methane deposits are found in large patterns related to deep-seated large-scale structural features of the crust rather than to the patchwork of sedimentary deposits<ref name="gold1999"/>
|-
| Gold <!-- Gold: similarity across large areas, calcite related, fractionation -->
| Interpretations of the chemical and isotopic composition of natural petroleum<ref name="gold1999"/>
|-
| Kudryavtsev, Gold
| The presence of oil and methane within non-[[sedimentary rock]]s upon the Earth<ref name="brown2005">{{cite journal | author=Brown, David | title= Vietnam finds oil in the basement| journal=AAPG Explorer | year=2005 | volume=26| issue=2 | pages=8–11}} [http://www.aapg.org/explorer/2005/02feb/vietnam.cfm Abstract]</ref>
|-
| Gold
| The existence of [[methane clathrate|methane hydrate]] deposits<ref name="gold1999"/>
|-
| Gold <!-- Gold (lack biological: Optical and odd-even; source may be association) -->
| Perceived ambiguity in some assumptions and key evidence used in the [[Petroleum#Formation|conventional understanding of petroleum origin]].<ref name="gold1999"/><ref name="kenney2" />
|-
| Gold
| [[Bituminous coal]] creation is based upon deep hydrocarbon [[seep]]s<ref name="gold1999"/>
|-
<!-- commented out because this is more a measure of the labs in Kudryavtsev's time | Kudryavtsev
| Inability to create petroleum-like material from organic material at the time the hypotheses were created <ref name="gold1999">{{cite book
| author=Gold, Thomas
| year=1999
| title=The deep, hot biosphere
| publisher=Copernicus Books
|isbn=0-387-98546-8
}}</ref>
|- -->
| Gold <!-- Gold: constant carbon, no oxygen buildup -->
| Surface carbon budget and oxygen levels stable over geologic time scales<ref name="gold1999"/>
|-
| Kudryavtsev<!-- Kudryatsev: Ni&V porphyrins, 60+km depths -->, Gold  <!-- Gold: Nickel and vanadium porphyrins, depths of 60 to 160 km, too much hydrogen -->
| The biogenic explanation does not explain some hydrocarbon deposit characteristics<ref name="gold1999"/>
|-
| Szatmari
| The distribution of metals in crude oils fits better with upper serpentinized mantle, primitive mantle and chondrite patterns than oceanic and continental crust, and show no correlation with sea water<ref name="szatmari">[[Peter Szatmari (geologist)|Szatmari, P]], Da Fonseca, T, and Miekeley, N. Trace Element Evidence for Major Contribution to Commercial Oils by Serpentinizing Mantle Peridotites. ''AAPG Research Conference'', Calgary, Canada, 2005. [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/short/szatmari.htm Abstract]</ref>
|-
| Gold
| The association of hydrocarbons with [[helium]], a noble gas<ref name="gold1999"/>
|}
 
==Investigation of the hypotheses==
{{Unbalanced|date=July 2009}}
 
Little research is directed on establishing abiogenic petroleum or methane, although the Carnegie Institution for Science have found that [[ethane]] and heavier hydrocarbons can be synthesized under conditions of the upper mantle.<ref>[http://www.eurekalert.org/pub_releases/2009-07/ci-hit072409.php Hydrocarbons in the deep Earth?] July 2009 news release.</ref> Research mostly related to [[astrobiology]] and the deep microbial biosphere and [[serpentinite]] reactions, however, continue to provide insight into the contribution of abiogenic hydrocarbons into petroleum accumulations.
* rock porosity and migration pathways for abiogenic petroleum<ref>Kitchka, A., 2005. Juvenile Petroleum Pathway: From Fluid Inclusions via Tectonic Pathways to Oil Fields. ''AAPG Research Conference'', Calgary, Canada, 2005.[http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/kitchka/kitchka.htm Abstract]</ref>
* ocean floor [[hydrothermal vent]]s as in the [[Lost City (hydrothermal field)|Lost City]] hydrothermal field;
* [[Mud volcano]]es and the volatile contents of deep pelagic oozes and deep formation brines
* mantle [[peridotite]] [[serpentinization]] reactions and other natural [[Fischer-Tropsch process|Fischer-Tropsch analogs]]
* Primordial hydrocarbons in [[meteorite]]s, [[comet]]s, [[asteroids]] and the solid bodies of the [[solar system]]
** Primordial or ancient sources of hydrocarbons or carbon in Earth<ref name="scott2004" /><ref name="Stachel">{{cite journal | author = Thomas Stachel | coauthors = Anetta Banas, Karlis Muehlenbachs, Stephan Kurszlaukis and Edward C. Walker |date=June 2006 | title = Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province | journal = Contributions to Mineralogy and Petrology | volume = 151 | issue = 6 | pages = 737–750 | doi = 10.1007/s00410-006-0090-7 |bibcode = 2006CoMP..151..737S }}</ref>
*** Primordial hydrocarbons formed from  hydrolysis of metal carbides of the iron peak of cosmic elemental abundance ([[chromium]], [[iron]], [[nickel]], [[vanadium]], [[manganese]], [[cobalt]])<ref>{{cite journal | author = Franco Cataldo |date=January 2003 | title = Organic matter formed from hydrolysis of metal carbides of the iron peak of cosmic elemental abundance | journal = International Journal of Astrobiology | volume = 2 | issue = 1 | pages = 51–63 | doi = 10.1017/S1473550403001393 |bibcode = 2003IJAsB...2...51C }}</ref>
* isotopic studies of groundwater reservoirs, sedimentary cements, formation gases and the composition of the noble gases and nitrogen in many oil fields
* the geochemistry of petroleum and the presence of trace metals related to Earth's mantle (nickel, vanadium, cadmium, [[arsenic]], [[lead]], [[zinc]], [[mercury (element)|mercury]] and others)
 
Similarly, research into the deep microbial hypothesis of hydrocarbon generation is advancing as part of the attempt to investigate the concept of [[panspermia]] and [[astrobiology]], specifically using deep microbial life as an analog for [[life on Mars (planet)|life on Mars]]. Research applicable to deep microbial petroleum theories includes
* Research into how to sample deep reservoirs and rocks without contamination
* Sampling deep rocks and measuring chemistry and biological activity<ref>{{cite journal | author = Thomas L. Kieft | coauthors = Sean M. McCuddy, T. C. Onstott, Mark Davidson, Li-Hung Lin, Bianca Mislowack, Lisa Pratt, Erik Boice, Barbara Sherwood Lollar, Johanna Lippmann-Pipke, Susan M. Pfiffner, Tommy J. Phelps, Thomas Gihring, Duane Moser, Arnand van Heerden |date=September 2005 | title = Geochemically Generated, Energy-Rich Substrates and Indigenous Microorganisms in Deep, Ancient Groundwater | journal = Geomicrobiology Journal | volume = 22 | issue = 6 | pages = 325–335 | doi = 10.1080/01490450500184876 }}</ref>
* Possible energy sources and metabolic pathways which may be used in a deep biosphere<ref>{{cite journal | author = Li-Hung Lin | coauthors = Greg F. Slater, Barbara Sherwood Lollar, Georges Lacrampe-Coulome, and T.C. Onstott |date=February 2005 | title = The yield and isotopic composition of radiolytic H<sub>2</sub>, a potential energy source for the deep subsurface biosphere | journal = Geochimica et Cosmochimica Acta | volume = 69 | issue = 4 | pages = 893–903 | doi = 10.1016/j.gca.2004.07.032 | bibcode=2005GeCoA..69..893L}}</ref><ref name="lollar2006" />
* Investigations into the reworking primordial hydrocarbons by bacteria and their effects on carbon isotope fractionation
 
==Proposed mechanisms of abiogenic petroleum==
{{Technical|date=July 2008}}
 
===Primordial deposits===
Thomas Gold's work was focused on hydrocarbon deposits of primordial origin.  Meteorites are believed to represent the major composition of material from which the Earth was formed.  Some meteorites, such as [[carbonaceous chondrite]]s, contain carbonaceous material.  If a large amount of this material is still within the Earth, it could have been leaking upward for billions of years.  The thermodynamic conditions within the mantle would allow many hydrocarbon molecules to be at equilibrium under high pressure and high temperature.  Although molecules in these conditions may disassociate, resulting fragments would be reformed due to the pressure.  An average equilibrium of various molecules would exist depending upon conditions and the carbon-hydrogen ratio of the material.<ref name="goldusgs">{{cite journal | author = Thomas Gold | title = The Origin of Methane (and Oil) in the Crust of the Earth, U.S.G.S. Professional Paper 1570, The Future of Energy Gases | publisher = USGS | year = 1993 | url = http://web.archive.org/web/20021015163818/www.people.cornell.edu/pages/tg21/usgs.html | accessdate = 2006-10-10}}</ref>
 
===Creation within the mantle===
Russian researchers concluded that hydrocarbon mixes would be created within the mantle.  Experiments under high temperatures and pressures produced many hydrocarbons—including n-[[alkanes]] through C<sub>10</sub>H<sub>22</sub>—from [[iron oxide]], [[calcium carbonate]], and water.<ref name="kenney2002" />  Because such materials are in the mantle and in [[Subduction|subducted]] crust, there is no requirement that all hydrocarbons be produced from primordial deposits.
 
===Hydrogen generation===
Hydrogen gas and water have been found more than {{convert|6000|m|ft}} deep in the upper crust in the [[Siljan Ring]] [[borehole]]s and the [[Kola Superdeep Borehole]].  Data from the western United States suggests that [[aquifer]]s from near the surface may extend to depths of {{convert|10000|m|ft}} to {{convert|20000|m|ft}}. Hydrogen gas can be created by water reacting with [[silicate]]s, [[quartz]], and [[feldspar]] at temperatures in the range of {{convert|25|°C|°F}} to {{convert|270|°C|°F}}.  These minerals are common in crustal rocks such as [[granite]]. Hydrogen may react with dissolved carbon compounds in water to form methane and higher carbon compounds.<ref>{{cite conference | author = G.J. MacDonald  | year = 1988 | title = Major Questions About Deep Continental Structures | booktitle = Deep drilling in crystalline bedrock, v. 1 | editor = A. Bodén and K.G. Eriksson | publisher = Springer-Verlag | location = Berlin | pages = 28–48 | ISBN= 3-540-18995-5}} Proceedings of the Third International Symposium on Observation of the Continental Crust through Drilling held in Mora and Orsa, Sweden, September 7–10, 1987</ref>
 
One reaction not involving silicates which can create hydrogen is:
 
''Ferrous oxide + water → magnetite + hydrogen''<br>
:<math>\mathrm{3FeO + H_2O \rarr Fe_3O_4 + H_2}</math>
 
The above reaction operates best at low pressures. At pressures greater than {{convert|5|GPa|atm}} almost no hydrogen is created.<ref name="scott2004">{{cite journal | author = Scott HP | coauthors = Hemley RJ, Mao HK, Herschbach DR, Fried LE, Howard WM, Bastea S. |date=September 2004 | title = Generation of methane in the Earth's mantle: in situ high pressure-temperature measurements of carbonate reduction | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 39 | pages = 14023–6 | doi = 10.1073/pnas.0405930101 | url = http://www.pnas.org/cgi/content/abstract/0405930101v1 | accessdate = 2006-08-16 | pmid = 15381767 | pmc = 521091 |bibcode = 2004PNAS..10114023S }}</ref>
 
However, the Siljan Ring borehole found no hydrocarbon, despite Thomas Gold's hypothesis predicting that they should be found. (see Siljan section in this article)
 
===Serpentinite mechanism===
 
In 1967, the [[Ukrainians|Ukrainian]] scientist [[Emmanuil B. Chekaliuk]] proposed that petroleum could be formed at high temperatures and pressures from inorganic carbon in the form of carbon dioxide, hydrogen and/or methane.
 
This mechanism is supported by several lines of evidence which are accepted by modern scientific literature. This involves synthesis of oil within the crust via catalysis by chemically reductive rocks. A proposed mechanism for the formation of inorganic hydrocarbons<ref name="keith2005">Keith, S., Swan, M. 2005. Hydrothermal Hydrocarbons. ''AAPG Research Conference'', Calgary, Canada, 2005. [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/keith/keith.htm Abstract]</ref> is via natural analogs of the [[Fischer-Tropsch process]] known as the ''serpentinite mechanism'' or the serpentinite process.<ref name="szatmari" /><ref name="charlou2005">J. L. Charlou, J. P. Donval, P. Jean-Baptiste, D. Levaché, Y. Fouquet, J. P. Foucher, P. Cochonat, 2005. Abiogenic Petroleum Generated by Serpentinization of Oceanic Mantellic Rocks. ''AAPG Research Conference'', Calgary, Canada, 2005.</ref>
 
:<math>\mathrm{CH_4 + \begin{matrix} \frac{1}{2} \end{matrix}O_2 \rarr 2 H_2 + CO}</math>
:<math>\mathrm{(2n+1)H_2 + nCO \rarr C_nH_{2n+2} + nH_2O}</math>
 
Serpentinites are ideal rocks to host this process as they are formed from [[peridotite]]s and [[dunite]]s, rocks which contain greater than 80% [[olivine]] and usually a percentage of Fe-Ti spinel minerals. Most olivines also contain high nickel concentrations (up to several percent) and may also contain chromite or chromium as a contaminant in olivine, providing the needed transition metals.
 
However, serpentinite synthesis and spinel cracking reactions require hydrothermal alteration of pristine peridotite-dunite, which is a finite process intrinsically related to metamorphism, and further, requires significant addition of water. Serpentinite is unstable at mantle temperatures and is readily dehydrated to [[granulite]], [[amphibolite]], [[talc]]&ndash;[[schist]] and even [[eclogite]]. This suggests that methanogenesis in the presence of serpentinites is restricted in space and time to mid-ocean ridges and upper levels of subduction zones.  However, water has been found as deep as {{convert|12000|m|ft}},<ref>{{cite journal | author = S. B. Smithson | coauthors = F. Wenzel, Y. V. Ganchin and I. B. Morozov | date = 2000-12-31 | title = Seismic results at Kola and KTB deep scientific boreholes: velocities, reflections, fluids, and crustal composition | journal = Tectonophysics | volume = 329 | issue = 1–4 | pages = 301–317 | doi = 10.1016/S0040-1951(00)00200-6 | bibcode=2000Tectp.329..301S}}</ref> so water-based reactions are dependent upon the local conditions. Oil being created by this process in intracratonic regions is limited by the materials and temperature.
 
====Serpentinite synthesis====
A chemical basis for the abiotic petroleum process is the [[serpentinite|serpentinization]] of [[peridotite]], beginning with methanogenesis via hydrolysis of olivine into serpentine in the presence of carbon dioxide.<ref name="charlou2005" /> Olivine, composed of Forsterite and Fayalite metamorphoses into serpentine, magnetite and silica by the following reactions, with silica from fayalite decomposition (reaction 1a) feeding into the forsterite reaction (1b).
 
'''Reaction 1a''':<br>
''Fayalite + water → magnetite + aqueous silica + hydrogen''
:<math>\mathrm{3Fe_2SiO_4 + 2H_2O \rarr 2Fe_3O_4 + 3SiO_2 + 2H_2 }</math>
 
'''Reaction 1b''':<br>
''Forsterite + aqueous silica → serpentinite''
:<math>\mathrm{3Mg_2SiO_4 + SiO_2 + 4H_2O \rarr 2Mg_3Si_2O_5(OH)_4}</math>
 
When this reaction occurs in the presence of dissolved carbon dioxide (carbonic acid) at temperatures above {{convert|500|°C|°F}} Reaction 2a takes place.
 
'''Reaction 2a''':<br>
''Olivine + water + carbonic acid → serpentine + magnetite + methane ''
:<math>\mathrm{(Fe,Mg)_2SiO_4 + nH_2O + CO_2 \rarr Mg_3Si_2O_5(OH)_4 + Fe_3O_4 + CH_4}</math>
or, in balanced form: <math>\mathrm{18 Mg_2SiO_4 + 6 Fe_2SiO_4 + 26 H_2O + CO_2}</math> → <math>\mathrm{12 Mg_3Si_2O_5(OH)_4 + 4 Fe_3O_4 + CH_4}</math>
 
However, reaction 2(b) is just as likely, and supported by the presence of abundant talc-carbonate schists and magnesite stringer veins in many serpentinised peridotites;
 
'''Reaction 2b''':<br>
''Olivine + water + carbonic acid → serpentine + magnetite + magnesite + silica ''
:<math>\mathrm{(Fe,Mg)_2SiO_4 + nH_2O + CO_2 \rarr Mg_3Si_2O_5(OH)_4 + Fe_3O_4 + MgCO_3 + SiO_2}</math>
<!-- nothing is being reduced here to counterbalance Fe being oxidized, so something is obviously missing -->
 
The upgrading of methane to higher n-alkane hydrocarbons is via [[dehydrogenation]] of methane in the presence of catalyst transition metals (e.g. Fe, Ni). This can be termed spinel hydrolysis.
 
===Spinel polymerization mechanism===
[[Magnetite]], [[chromite]] and [[ilmenite]] are Fe-spinel group minerals found in many rocks but rarely as a major component in non-[[ultramafic]] rocks. In these rocks, high concentrations of magmatic magnetite, chromite and ilmenite provide a reduced matrix which may allow abiotic cracking of methane to higher hydrocarbons during [[hydrothermal]] events.
 
Chemically reduced rocks are required to drive this reaction and high temperatures are required to allow methane to be polymerized to ethane. Note that reaction 1a, above, also creates magnetite.
 
'''Reaction 3''':<br>
''Methane + magnetite → ethane + hematite ''<br>
:<math>\mathrm{nCH_4 + nFe_3O_4 + nH_2O \rarr C_2H_6 + Fe_2O_3 + HCO_3 + H^+}</math>
<!-- nothing is being reduced here to counterbalance the oxidation of both C and Fe, so something is obviously wrong -->
 
Reaction 3 results in n-alkane hydrocarbons, including linear saturated hydrocarbons, [[alcohol]]s, [[aldehyde]]s, [[ketone]]s, [[aromatic]]s, and cyclic compounds.<ref name="charlou2005" />
 
===Carbonate decomposition===
Calcium carbonate may decompose at around {{convert|500|°C|°F}} through the following reaction:<ref name="scott2004" />
 
'''Reaction 5''':<br>
''Hydrogen + calcium carbonate → methane + calcium oxide + water ''<br>
:<math>\mathrm{4H_2 + CaCO_3 \rarr CH_4 + CaO + 2H_2O}</math>
 
Note that CaO (lime) is not a mineral species found within natural rocks. Whilst this reaction is possible, it is not plausible.
 
===Evidence of abiogenic mechanisms===
* Theoretical calculations by J.F. Kenney using scaled particle theory (a statistical mechanical model) for a simplified perturbed hard-chain predict that methane compressed to {{convert|30000|bar|GPa}} or {{convert|40000|bar|GPa}} kbar at {{convert|1000|°C|°F}} (conditions in the mantle) is relatively unstable in relation to higher hydrocarbons. However, these calculations do not include methane pyrolysis yielding amorphous carbon and hydrogen, which is recognized as the prevalent reaction at high temperatures.<ref name="kenney2001" /><ref name="kenney2002" />
* Experiments in diamond anvil high pressure cells have resulted in partial conversion of methane and inorganic carbonates into light hydrocarbons.,<ref name="sharma">{{cite journal|author = Sharma, A. et al. |title = In Situ Diamond-Anvil Cell Observations of Methanogenesis at High Pressures and Temperatures|journal = Energy Fuels|pages = 5571–5579|year = 2009|doi= 10.1021/ef9006017|volume = 23|issue = 11}}</ref><ref name="Kolesnikov">{{cite journal|author = Kolesnikov, A. et al. |title = Methane-derived hydrocarbons produced under upper-mantle conditions|journal = Nature Geoscience|pages = 566–570|year = 2009|doi= 10.1038/ngeo591|volume = 2|bibcode = 2009NatGe...2..566K }}</ref>
 
==Biotic (microbial) hydrocarbons==
The "deep biotic petroleum hypothesis", similar to the abiogenic petroleum origin hypothesis, holds that not all [[petroleum]] deposits within the Earth's rocks can be explained purely according to the orthodox view of [[petroleum geology]].  [[Thomas Gold]] used the term ''the deep hot biosphere'' to describe the microbes which live underground.<ref name="gold1999" /><ref>{{cite journal | author = Thomas Gold | title = The Deep, Hot Biosphere | journal = PNAS | year = 1992 | url = http://www.pnas.org/cgi/content/abstract/89/13/6045 | accessdate = 2006-09-27 | volume = 89 | pages = 6045–6049 | doi = 10.1073/pnas.89.13.6045 | pmid = 1631089 | issue = 13 | pmc = 49434 | bibcode=1992PNAS...89.6045G}}</ref><ref>{{cite web| url = http://www.people.cornell.edu/pages/tg21/DHB.html | title =  The Deep, Hot Biosphere| accessdate = 2006-09-27| last = Gold| first = Thomas| authorlink = Thomas Gold|date=July 1992 |archiveurl = http://web.archive.org/web/20021004123112/http://www.people.cornell.edu/pages/tg21/DHB.html |archivedate = 2002-10-04}}</ref>
 
This hypothesis is different from biogenic oil in that the role of deep-dwelling microbes is a biological source for oil which is not of a sedimentary origin and is not sourced from surface carbon. Deep microbial life is only a contaminant of primordial hydrocarbons. Parts of microbes yield molecules as biomarkers.
 
Deep biotic oil is considered to be formed as a byproduct of the life cycle of deep microbes.
Shallow biotic oil is considered to be formed as a byproduct of the life cycles of shallow microbes.
 
===Microbial biomarkers===
[[Thomas Gold]], in a 1999 book, cited the discovery of [[thermophile]] bacteria in the Earth's crust as new support for the postulate that these bacteria could explain the existence of certain [[Biomarker (petroleum)|biomarker]]s in extracted petroleum.<ref name="gold1999"/> A rebuttal of biogenic origins based on biomarkers has been offered by Kenney, et al. (2001).<ref name=glasby2006/><ref name="kenney2001" />
 
====Isotopic evidence====
[[Methane]] is ubiquitous in crustal fluid and gas.<ref name="lollar2006" /> Research continues to attempt to characterise crustal sources of methane as biogenic or abiogenic using carbon isotope fractionation of observed gases (Lollar & Sherwood 2006). There are few clear examples of abiogenic methane-ethane-butane, as the same processes favor enrichment of light isotopes in all chemical reactions, whether organic or inorganic. δ<sup>13</sup>C of methane overlaps that of inorganic carbonate and graphite in the crust, which are heavily depleted in <sup>12</sup>C, and attain this by isotopic fractionation during metamorphic reactions.
 
One argument for abiogenic oil cites the high carbon depletion of methane as stemming from the observed carbon isotope depletion with depth in the crust. However, diamonds, which are definitively of mantle origin, are not as depleted as methane, which implies that methane carbon isotope fractionation is not controlled by mantle values.<ref name="mello2005">M. R. Mello and J. M. Moldowan (2005). Petroleum: To Be Or Not To Be Abiogenic. ''AAPG Research Conference'', Calgary, Canada, 2005. [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/mello/mello.htm Abstract]</ref>
 
Commercially extractable concentrations of [[helium]] (greater than 0.3%) are present in natural gas from the Panhandle-[[Hugoton Natural Gas Area|Hugoton]] fields in the USA, as well as from some Algerian and Russian gas fields.<ref>http://minerals.usgs.gov/minerals/pubs/commodity/helium/330495.pdf "Helium", USGS, Joseph B. Peterson</ref><ref>http://minerals.usgs.gov/minerals/pubs/commodity/helium/mcs-2011-heliu.pdf "Mineral Commodities Survey: Helium", January 2011 USGS</ref>
 
Helium trapped within most petroleum occurrences, such as the occurrence in Texas, is of a distinctly crustal character with an ''Ra'' ratio of less than 0.0001 that of the atmosphere.<ref name="Weinlich">{{cite journal | author = Weinlich, F.H. | coauthors = Brauer K., Kampf H., Strauch G., J Tesar and S.M. Weise | year = 1999 | title = An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C and N) and compositional fingerprints - Implications with respect to the degassing processes | journal = Geochimica et Cosmochimica Acta | volume = 63 | issue = 21 | pages = 3653–3671 | doi = 10.1016/S0016-7037(99)00187-8 | bibcode=1999GeCoA..63.3653W}}</ref><ref name="Polyak">{{cite journal | author = B.G.Polyak | coauthors = I.N. Tolstikhin, I.L. Kamensky, L.E. Yakovlev, B. Marty and A.L. Cheshko | year = 2000 | title = Helium isotopes, tectonics and heat flow in the Northern Caucasus | journal = Geochimica et Cosmochimica Acta | volume = 64 | issue = 11 | pages = 1924–1944 | doi = 10.1016/S0016-7037(00)00342-2 | bibcode=2000GeCoA..64.1925P}}</ref>
 
The Chimaera gas seep, near Antalya (SW Turkey), new and thorough molecular and isotopic analyses including methane (~87% v/v; D13C1 from -7.9 to -12.3 ‰; D13D1 from -119 to -124 ‰), light alkanes (C2+C3+C4+C5 = 0.5%; C6+: 0.07%; D13C2 from -24.2 to -26.5 ‰; D13C3 from -25.5 to -27 ‰), hydrogen (7.5 to 11%), carbon dioxide (0.01-0.07%; D13CCO2: -15 ‰), helium (~80 ppmv; R/Ra: 0.41) and nitrogen (2-4.9%; D15N from -2 to -2.8 ‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature Type III kerogen occurring in Paleozoic and Mesozoic organic rich sedimentary rocks, and abiogenic gas produced by low temperature serpentinization in the Tekirova ophiolitic unit.<ref name="Hoşgörmez, H. 2008">{{cite journal|author= Hoşgörmez, H., Etiope, G., Yalçın, M.N. |title= New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas |journal= Geofluids |issue= 8 |pages= 263–273 |year= 2008 |doi= 10.1111/j.1468-8123.2008.00226.x }}</ref>
 
===Biomarker chemicals===
Certain chemicals found in naturally occurring petroleum contain chemical and structural similarities to compounds found within many living organisms. These include [[terpenoid]]s, [[terpene]]s, [[pristane]], [[phytane]], [[cholestane]], [[chlorin]]s and [[porphyrin]]s, which are large, [[chelate|chelating]] molecules in the same family as [[heme]] and [[chlorophyll]]. Materials which suggest certain biological processes include tetracyclic diterpane and oleanane.
 
The presence of these chemicals in crude oil is a result of the inclusion of biological material in the oil; these chemicals are released by [[kerogen]] during the production of hydrocarbon oils, as these are chemicals highly resistant to degradation and plausible chemical paths have been studied. Abiotic defenders state that biomarkers get into oil during its way up as it gets in touch with ancient fossils. However a more plausible explanation is that biomarkers are traces of biological molecules from bacteria (archaea) that feed on primordial hydrocarbons and die in that environment. For example, hopanoids are just parts of the bacterial cell wall present in oil as contaminant.<ref name="gold1999"/>
 
===Trace metals===
[[Nickel]] (Ni), [[vanadium]] (V), [[lead]] (Pb), [[arsenic]] (As), [[cadmium]] (Cd), [[mercury (element)|mercury]] (Hg) and others metals frequently occur in oils. Some heavy crude oils, such as Venezuelan heavy crude have up to 45% [[vanadium]] pentoxide content in their ash, high enough that it is a commercial source for vanadium. Abiotic supporters argue that these metals are common in Earth's mantle, but relatively high contents of nickel, vanadium, lead and arsenic can be usually found in almost all marine sediments.
 
Analysis of 22 trace elements in oils correlate significantly better with [[chondrite]], serpentinized fertile mantle peridotite, and the primitive mantle than with oceanic or continental crust, and shows no correlation with seawater.<ref name="szatmari" />
 
===Reduced carbon===
Sir [[Robert Robinson (organic chemist)|Robert Robinson]] studied the chemical makeup of natural petroleum oils in great detail, and concluded that they were mostly far too hydrogen-rich to be a likely product of the decay of plant debris, assuming a dual origin for Earth hydrocarbons.<ref name="goldusgs" />  However, several processes which generate hydrogen could supply kerogen hydrogenation which is compatible with the conventional explanation.<ref>{{cite journal | author = Zhijun Jin | coauthors = Liuping Zhang, Lei Yang and Wenxuan Hu  |date=January 2004 | title = A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins | journal = Journal of Petroleum Science and Engineering | volume = 41 | issue = 1–3 | pages = 45–55 | doi = 10.1016/S0920-4105(03)00142-6 }}</ref>
 
[[Olefin]]s, the unsaturated hydrocarbons, would have been expected to predominate by far in any material that was derived in that way. He also wrote: "Petroleum ... [seems to be] a primordial hydrocarbon mixture into which bio-products have been added."
 
This has however been demonstrated later to be a misunderstanding by Robinson, related to the fact that only short duration experiments were available to him.  Olefins are thermally very unstable (that is why natural petroleum normally does not contain such compounds) and in laboratory experiments that last more than a few hours, the olefins are no longer present.{{citation needed|date=January 2011}}
 
The presence of low-oxygen and hydroxyl-poor hydrocarbons in natural living media is supported by the presence of natural waxes (n=30+), oils (n=20+) and lipids in both plant matter and animal matter, for instance fats in phytoplankton, zooplankton and so on. These oils and waxes, however, occur in quantities too small to significantly affect the overall hydrogen/carbon ratio of biological materials.
However, after the discovery of highly aliphatic biopolymers in algae, and that oil generating kerogen essentially represent concentrates of such materials, no theoretical problem exists anymore.{{citation needed|date=January 2011}}  Also, the millions of source rock samples that have been analyzed for petroleum yield by the petroleum industry have confirmed the large quantities of petroleum found in sedimentary basins.
 
==Field observations==
Proponents sometimes cite occurrences of abiotic petroleum in commercial amounts, in the oil wells in offshore Vietnam, [[Eugene Island block 330 oil field]], and the Dnieper-Donets Basin, but the origins of all these wells can be explained with the biotic theory.<ref name="glasby2006"/><ref name="tsl.uu.se">Höök, M., Bardi, U., Feng, L., Pang, X., 2010. Development of oil formation theories and their importance for peak oil. Marine and Petroleum Geology, Volume 27, Issue 9, October 2010, Pages 1995&ndash;2004. See also: http://www.tsl.uu.se/uhdsg/Publications/Abiotic_article.pdf</ref> Modern geologists think that commercially profitable deposits of abiotic petroleum ''could'' be found, but no current deposit has convincing evidence that it originated from abiotic sources.<ref name="tsl.uu.se"/>
 
The Soviet school saw evidence of their hypothesis in the fact that some oil reservoirs exist in non-sedimentary rocks such as granite, metamorphic or porous volcanic rocks. However, critics note that non-sedimentary rocks served as reservoirs for biologically originated oil expelled from nearby sedimentary source rock through common migration or re-migration mechanisms.<ref name="tsl.uu.se"/>
 
The following observations have been commonly used to argue for the abiogenic hypothesis, however all the observations of actual petroleum can also be fully explained by biotic origin.<ref name="tsl.uu.se"/>
 
===Lost City Hydrothermal Vent Field===
The [[Lost City (hydrothermal field)|Lost City Hydrothermal Vent Field]] was determined to have abiogenic hydrocarbon production.  Proskurowski et al. wrote, "Radiocarbon evidence rules out seawater bicarbonate as the carbon source for [[Fisher-Tropsch process|FTT reactions]], suggesting that a mantle-derived inorganic carbon source is leached from the host rocks. Our findings illustrate that the abiotic synthesis of hydrocarbons in nature may occur in the presence of ultramafic rocks, water, and moderate amounts of heat."<ref>{{cite journal | author = Proskurowski Giora ''et al.'' | year = 2008 | title = Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field | url = http://www.sciencemag.org/cgi/content/short/319/5863/604 | journal = Science | volume = 319 | issue = 5863| pages = 604–607 | doi = 10.1126/science.1151194 | pmid = 18239121 }}</ref>
 
===Siljan Ring, Sweden===
The [[Siljan Ring]] meteorite crater, Sweden, was proposed by [[Thomas Gold]] as the most likely place to test the hypothesis because it was one of the few places in the world where the granite basement was cracked sufficiently (by meteorite impact) to allow oil to seep up from the mantle; furthermore it is infilled with a relatively thin veneer of sediment, which was sufficient to trap any abiogenic oil, but was modelled as not having been subjected to the heat and pressure conditions (known as the "oil window") normally required to create biogenic oil.  However, some geochemists concluded by geochemical analysis that the oil in the seeps came from the organic-rich [[Ordovician]] Tretaspis shale, where it was heated by the meteorite impact.<ref>Kathy Shirley, "Siljan project stays in cross fire", ''AAPG Explorer'', January 1987, p.12-13.</ref>
 
In 1986–1990 The Gravberg-1 borehole was drilled through the deepest rock in the Siljan Ring in which proponents had hoped to find hydrocarbon reservoirs. It stopped at the depth of {{convert|6800|m|ft}} due to drilling problems, after private investors spent $40 million.<ref name=kerr /> Some eighty barrels of magnetite paste and hydrocarbon-bearing sludge were recovered from the well; Gold maintained that the hydrocarbons were chemically different from, and not derived from, those added to the borehole, but analyses showed that the hydrocarbons were derived from the diesel fuel-based drilling fluid used in the drilling.<ref name=kerr /><ref name=jeffrey /><ref name=castano /><ref>Alan Jeffrey and Isaac Kaplan, [http://www.onepetro.org/mslib/servlet/onepetropreview?id=00019898&soc=SPE "Asphaltene-like material in Siljan Ring well suggests mineralized altered drilling fluid"], ''Journal of Petroleum Technology'', December 1989, p.1262&ndash;1263, 1310&ndash;1313. The authors conclude: "No evidence for an indigenous or deep source for the hydrocarbons could be justified."</ref> This well also sampled over {{convert|13000|ft|m}} of methane-bearing inclusions.<ref>[http://www.geology.wisc.edu/~pbrown/fi/pac6/mikesmith.html Fluid Inclusion Volatile Well Logs of the Gravberg#1 Well, Siljan Ring, Sweden] Michael P. Smith</ref>
 
In 1991–1992, a second borehole, Stenberg-1, was drilled a few miles away to a depth of {{convert|6500|m|ft}}, finding similar results. Again, no abiotic hydrocarbons were found.<ref name=glasby2006/><ref name=mello2005 />
 
===Bacterial mats===
Direct observation of bacterial mats and fracture-fill carbonate and humin of bacterial origin in deep boreholes in Iran, Australia,<ref>{{cite journal | author = Bons P. ''et al.'' | year = 2004 | title = Fossil microbes in late proterozoic fibrous calcite veins from Arkaroola, South Australia | url = | journal = Geological Society of America Abstracts with Programs | volume = 36 | issue = 5| page = 475 }}</ref> <!-- please discuss your evidence for oil in the second drillhole on the talk page, and provide ref links if possible, because it would be good to see the evidence and close up this issue. cheers, Rolinator -->
 
===Example proposed abiogenic methane deposits===
Panhandle-[[Hugoton Natural Gas Area|Hugoton field]] ([[Anadarko Basin]]) in the south-central United States is the most important gas field with commercial helium content. Some abiogenic proponents interpret this as evidence that both the helium and the natural gas came from the mantle.<ref name="Weinlich"/><ref name="Polyak" /><ref name="Lloyd">{{cite book
  | last = Pippin
  | first = Lloyd
  | authorlink =
  | title = Geology of Giant Petroleum Fields
  | chapter = Panhandle-Hugoton Field, Texas-Oklahoma-Kansas--the First Fifty Years
  | chapterurl = http://search.datapages.com/data/specpubs/fieldst2/data/a009/a009/0001/0200/0204.htm
  | pages = 204–222
  | publisher =
  | series =
  | year = 1970
  | doi =
  | isbn =  }}</ref><ref>Gold, T., and M. Held, 1987, ''Helium-nitrogen-methane systematics in natural gases of Texas and Kansas:'' Journal of Petroleum Geology, v. 10, no. 4, p. 415–424.</ref>
 
The [[Bạch Hổ oil field]] in [[Vietnam]] has been proposed as an example of abiogenic oil because it is 4,000 m of fractured basement granite, at a depth of 5,000 m.<ref>{{cite journal | author = Anirbid Sircar  | date = 2004-07-25 | title = Hydrocarbon production from fractured basement formations | journal = Current Science | volume = 87 | issue = 2 | pages = 147–151 | url = http://www.ias.ac.in/currsci/jul252004/147.pdf | format = pdf }}</ref> However, others argue that it contains biogenic oil which leaked into the basement horst from conventional source rocks within the [[Cuu Long]] basin.<ref name="brown2005" /><ref>White Tiger oilfield, Vietnam. AAPG Review of [http://www.aapg.org/explorer/2005/02feb/vietnam.cfm CuuLong Basin] and [http://www.aapg.org/explorer/2005/02feb/vietnamseismic01.jpg Seismic profile] showing basement horst as trap for biogeic oil.</ref> <!-- ([[Talk:Abiogenic petroleum origin#Going over the evidence again|(discussion)]] -->
 
A major component of mantle-derived carbon is indicated in commercial gas reservoirs in the [[Pannonian Basin|Pannonian]] and [[Vienna basin]]s of Hungary and Austria.<ref>{{cite journal|title=The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures|journal=Geochimica et Cosmochimica Acta|date=June 1997|first=B. Sherwood|last=Lollara|author2=C. J. Ballentine|author3=R. K. Onions|volume=61|issue=11|pages=2295–2307|doi= 10.1016/S0016-7037(97)00083-5|url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V66-3SWJH68-1T&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=bee722ceefac8870c425e31888931977|format=|accessdate=2008-06-06|bibcode=1997GeCoA..61.2295S}}</ref>
 
Natural gas pools interpreted as being mantle-derived are the [[Shengli Field]]<ref>{{cite journal|title=Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying Sag, Bohai Bay Basin|journal=Chinese Science Bulletin|date=2002-10-30|first=Zhijun|last=JIN|author2=ZHANG Liuping|author3=ZENG Jianhui|volume=47|issue=20|pages=1756–1760|id= |url=http://scholar.ilib.cn/A-ddgzyckx-e200402006.html|format=PDF|accessdate=2008-06-06|doi=10.1360/02tb9384 }}</ref> and Songliao Basin, northeastern China.<ref>{{cite journal|title=Geochemistry And Tectonic Environment And Reservoir Formation Of Mantle-Derived Natural Gas In The Songliao Basin, Northeastern China|journal=Geotectonica et Metallogenia|year=2004|first=Zian|last=Li|author2=GUO Zhanqian|author3=BAI Zhenguo|author4=LIN Ge |volume=|issue=|pages=|id= |url=http://scholar.ilib.cn/A-ddgzyckx-e200402006.html|accessdate=2008-06-06 }}</ref><ref>{{cite web|url=http://www.magnet.fsu.edu/mediacenter/publications/reports/2006annualreport/2006-NHMFL-Report431.pdf |title=ABIOGENIC HYDROCARBON ACCUMULATIONS IN THE SONGLIAO BASIN, CHINA |accessdate=2008-06-06 |year=2006 |format=PDF |publisher=NATIONAL HIGH MAGNETIC FIELD LABORATORY }}</ref>
 
The Chimaera gas seep, near Çıralı, Antalya (southwest Turkey), has been continuously active for millennia and it is known to be the source of the first Olympic fire in the Hellenistic period. On the basis of chemical composition and isotopic analysis, the Chimaera gas is said to be about half biogenic and half abiogenic gas, the largest emission of biogenic methane discovered; deep and pressurized gas accumulations necessary to sustain the gas flow for millennia, posited to be from an inorganic source, may be present.<ref name="Hoşgörmez, H. 2008"/> Local geology of Chimaera flames, at exact position of flames, reveals contact between serpentinized ophiolite and carbonate rocks. Fischer-Tropsch process can be suitable reaction to form hydrocarbons gases.
 
==Geological argument for abiogenic oil==
Given the known occurrence of methane and the probable catalysis of methane into higher atomic weight hydrocarbon molecules, the abiogenic hypothesis considers the following to be key observations in support;
* The serpentinite synthesis, graphite synthesis and spinel catalysation models prove the process is viable<ref name="szatmari" /><ref name="charlou2005" />
* The likelihood that abiogenic oil seeping up from the mantle is trapped beneath sediments which effectively seal mantle-tapping faults<ref name="keith2005" />
* Mass-balance calculations for supergiant oilfields which argue that the calculated source rock could not have supplied the reservoir with the known accumulation of oil, implying deep recharge (Kudryavtsev, Geological proof of the deep origin of Petroleum, 1951)
* The presence of hydrocarbons encapsulated in diamonds <ref name="Leung et al.,2005" >Leung, I.; Tsao, C.; Taj-Eddin, I. [http://adsabs.harvard.edu/abs/2005AGUSM.V51A..12L Hydrocarbons Encapsulated in Diamonds From China and India] // American Geophysical Union, Spring Meeting 2005, abstract #V51A-12</ref>
 
===Incidental evidence===
The proponents of abiogenic oil use several arguments which draw on a variety of natural phenomena in order to support the hypothesis
 
* The modelling of some researchers which shows the Earth was accreted at relatively low temperature, thereby perhaps preserving primordial carbon deposits within the mantle, to drive abiogenic hydrocarbon production<ref>{{cite journal | author=John W. Valley, William H. Peck, Elizabeth M.King, Simon A. Wilde | title=A Cool Early Earth | journal=Geology | year=2002 | volume=30 | issue=4 | pages=351–354 | doi=10.1130/0091-7613(2002)030<0351:ACEE>2.0.CO;2 | issn=0091-7613|bibcode = 2002Geo....30..351V }} {{cite web | title= A Cool Early Earth | work= Zircons Are Forever | url=http://www.geology.wisc.edu/zircon/cool_early/cool_early_home.html | accessdate=11 April 2005 | archiveurl= http://web.archive.org/web/20050304082845/http://www.geology.wisc.edu/zircon/cool_early/cool_early_home.html| archivedate= 4 March 2005 <!--DASHBot-->| deadurl= no}}</ref>
* The presence of methane within the gases and fluids of mid-ocean ridge spreading centre [[hydrothermal]] fields<ref>{{cite journal | author=Chapelle, F.H., O'Neill, K., Bradley, P.M., Methe, B.A., Ciufo, S.A., Knobel, L.L., and Lovley, D.R. | title=A hydrogen-based subsurface microbial community dominated by methanogens | journal=Nature | volume=415 | year=2002 | pages=312–315|doi=10.1038/415312a | pmid=11797006 | issue=6869|bibcode = 2002Natur.415..312C }}</ref>
 
==Geological argument against==
[[Image:USGS world oil endowment.png|thumb|Oil deposits are not directly associated with tectonic structures.]]
Key arguments against chemical reactions, such as the serpentinite mechanism, as being the major source of hydrocarbon deposits within the crust are;
* The lack of available pore space within rocks as depth increases <!-- ; especially within the mantle {{Citation needed|date=February 2008}} -->
** This is contradicted by numerous studies which have documented the existence of hydrologic systems operating over a range of scales and at all depths in the continental crust.<ref>{{cite journal | author = C. E. Manning | coauthors = S. E. Ingebritsen | date = 1999-02-01 | title = Permeability of the continental crust: implications of geothermal data and metamorphic systems | journal = Reviews of Geophysics | volume = 37 | issue = 1 | pages = 127–150  | doi = 10.1029/1998RG900002 | bibcode=1999RvGeo..37..127M}}</ref>
* The lack of any hydrocarbon within the crystalline shield areas of the major [[craton]]s, especially around key deep seated structures which are predicted to host oil by the abiogenic hypothesis.<ref name="mello2005" /> See [[Siljan (lake)#Deep drilling project|Siljan Lake]].
* Limited evidence that major serpentinite belts underlie continental sedimentary basins which host oil
* Lack of conclusive proof that carbon isotope fractionation observed in crustal methane sources is entirely of abiogenic origin (Lollar et al. 2006)<ref name="lollar2006" />
* Mass balance problems of supplying enough carbon dioxide to serpentinite within the metamorphic event before the peridotite is fully reacted to serpentinite
* Drilling of the Siljan Ring failed to find commercial quantities of oil,<ref name="mello2005" /> thus providing a counter example to [[Kudryavtsev's Rule]]<ref name=kerr /><!--"But astrophysicist [Thomas] Gold has long insisted that oil and gas drillers are hitting hydrocarbons that have seeped up 40 kilometers or more from Earth's mantle, where they were deposited as the planet formed." From Kerr's article in Science--> and failing to locate the predicted abiogenic oil.
* Helium in the Siljan Gravberg-1 well was depleted in [[Helium-3|<sup>3</sup>He]] and not consistent with a mantle origin<ref>{{cite conference | author = A. W.A. Jeffrey  | coauthors = I. R. Kaplan and J. R. Castaño | year = 1988 | title = Analyses of Gases in the Gravberg-1 Well | booktitle = Deep drilling in crystalline bedrock, v. 1 | editor = A. Bodén and K.G. Eriksson | publisher = Springer-Verlag | location = Berlin | pages = 134–139 | url =  | format =  | accessdate =  | doi =  | ISBN= 3-540-18995-5}}</ref>
**The Gravberg-1 well only produced {{convert|84|oilbbl}} of oil, which later was shown to derive from organic additives, lubricants and mud used in the drilling process.<ref name=kerr>{{Cite journal |author= Kerr, R.A. |title= When a Radical Experiment Goes Bust |journal= [[Science (magazine)|Science]] |date= 9 march 1990 |volume= 247 |issue= 4947 |pages= 1177–1179 |doi= 10.1126/science.247.4947.1177 |postscript=. |bibcode = 1990Sci...247.1177K }}</ref><ref name=jeffrey>Jeffrey, A.W.A, Kaplan, I.R., 1989. Drilling fluid additives and artifact hydrocarbons shows: examples from the Gravberg-1 well, Siljan Ring, Sweden, Scientific Drilling, Volume 1, Pages 63-70</ref><ref name=castano>Castano, J.R., 1993. Prospects for Commercial Abiogenic Gas Production: Implications from the Siljan Ring Area, Sweden, In: The future of energy gases: U.S. Geological Survey Professional Paper 1570, p. 133-154.</ref>
* The distribution of sedimentary basins is caused by plate tectonics, with sedimentary basins forming on either side of a [[volcanic arc]], which explains the distribution of oil within these sedimentary basins
* Kudryavtsev's Rule has been explained for oil and gas (not coal)—gas deposits which are below oil deposits can be created from that oil or its source rocks.  Because natural gas is less dense than oil, as kerogen and hydrocarbons are generating gas the gas fills the top of the available space.  Oil is forced down, and can reach the spill point where oil leaks around the edge(s) of the formation and flows upward.  If the original formation becomes completely filled with gas then all the oil will have leaked above the original location.<ref>{{cite journal  | last = Price  | first = Leigh C.  | title = Origins, Characteristics, Evidence For, and Economic Viabilities of Conventional and Unconventional Gas Resource Bases  | journal = Geologic controls of deep natural gas resources in the United States (USGS Bulletin 2146)  | pages = 181–207  | publisher = USGS  | year = 1997  | url = http://pubs.er.usgs.gov/usgspubs/b/b2146  | accessdate = 2006-10-12 }}</ref>
* Ubiquitous [[diamondoid]]s in natural hydrocarbons such as oil, gas and condensates are composed of carbon from biological sources, unlike the carbon found in normal diamonds.<ref>[http://www.searchanddiscovery.net/documents/abstracts/2005research_calgary/abstracts/extended/mello/mello.htm Petroleum: To Be Or Not To Be Abiogenic, by M. R. Mello and J. M. Moldowan; #90043 (2005)<!-- Bot generated title -->]</ref>
 
===Arguments against the incidental evidence===
* Gas ruptures during earthquakes are more likely to be sourced from biogenic methane generated in unconsolidated sediment from existing organic matter, released by [[earthquake liquefaction]] of the reservoir during tremors
* The presence of methane hydrate is arguably produced by bacterial action upon organic detritus falling from the [[littoral]] zone and trapped in the depth due to pressure and temperature
* The likelihood of vast concentrations of methane in the mantle is very slim, given mantle xenoliths have negligible methane in their fluid inclusions; conventional plate tectonics explains deep focus quakes better, and the extreme confining pressures invalidate the hypothesis of gas pockets causing quakes
* Further evidence is the presence of diamond within [[kimberlite]]s and [[lamproite]]s which sample the mantle depths proposed as being the source region of mantle methane (by Gold et al.).<ref name="goldusgs" />
 
==Extraterrestrial argument==
 
The presence of [[methane]] on Saturn's moon Titan and in the atmospheres of Jupiter, Saturn, Uranus and Neptune is cited as evidence of the formation of hydrocarbons without biology,<ref name=glasby2006/><ref name="tsl.uu.se"/> for example by Thomas Gold.<ref name="gold1999"/>  (Terrestrial [[natural gas]] is composed primarily of methane).  Some comets contain "massive amounts of an organic material almost identical to high grade oil shale ([[kerogen]])," the equivalent of cubic kilometers of such mixed with other material;<ref name = IdahoNationalLab>Dr. A. Zuppero, U.S. Department of Energy, Idaho National Engineering Laboratory. [http://www.neofuel.com/zuppero-1995-water-ice-nearly-everywhere-114647.pdf Discovery Of Water Ice Nearly Everywhere In The Solar System]</ref> for instance, corresponding hydrocarbons were detected during a probe fly-by through the tail of Comet Halley in 1986.<ref name="Huebner1990">{{cite book
| author=Huebner, Walter F.(Ed)
| year=1990
| title=Physics and Chemistry of Comets
| publisher=Springer-Verlag
|isbn=978-0-387-51228-0
}}</ref>
 
==See also==
* [[Eugene Island block 330 oil field]]
* [[Fischer-Tropsch process]]
* [[Fossil fuel]]
* [[Nikolai Kudryavtsev|Nikolai Alexandrovitch Kudryavtsev]]
* [[Peak oil]]
* [[Thomas Gold]]
 
==References==
{{Reflist|2}}
 
==Bibliography==
* Kudryavtsev N.A., 1959. Geological proof of the deep origin of Petroleum. Trudy ''Vsesoyuz. Neftyan. Nauch. Issledovatel Geologoraz Vedoch. Inst.''  No.132, pp.&nbsp;242–262 {{ru icon}}
 
<!-- Dead note "Mao2002": {{cite journal | author = Jingwen Mao | coauthors = Robert Kerrich, Hongyan Li and Yanhe Li | year = 2002 | title = High <sup>3</sup>He/<sup>4</sup>He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the Tanlu deep fault zone | journal = Geochemical Journal | volume = 36 | pages = 197–208 }} -->
<!-- Dead note "Zhmur2002": Zhmur S.L., 2002. Shungites of Karelia as Model for Carbon Hondrites Formation. ''Journal of Astrobiology''. [http://biospace.nw.ru/astrobiology/Articles2002/Astrobio_zhmur_111.pdf Paper (pdf)] -->
<!-- Dead note "Dutkiewicz": Dutkiewicz, A., Volk A., Ridley J., George S., 2003. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. ''Geology''; '''v. 31'''; p. 981-984 [http://geology.geoscienceworld.org/cgi/content/abstract/31/11/981 Abstract] -->
<!-- Dead note "stanton2004": Stanton, M.S., 2004. Origin of the Lower Cretaceous Heavy Oils ("Tar Sands") of Alberta. ''AAPG Search and Discovery Article #10071'' (2004) [http://www.searchanddiscovery.com/documents/2004/stanton/images/stanton.pdf Article link (pdf)]  -->
<!-- Dead note "Valyaev2005": B. M. Valyaev, S. A. Leonov, G. A. Titkov, and M. Yu. Chudetsky, 2005. Conceptions and Indicators of the Abiogenic Oil and Gas Origin and Its Significance. ''AAPG Conference, Calgary, Canada 2005''. [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/valyaev/valyaev.htm Abstract] -->
<!-- Dead note "dow2005": Dow, W.G., 2005. The Petroleum System Paradigm and the Biogenic Origin of Oil and Gas. ''AAPG Conference, Calgary, Canada 2005.'' [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/dow/dow.htm Abstract] discussion of oil genesis, optical axis shifts, and the CuuLong / White Tiger field. -->
<!-- Dead note "Seewald2005": Seewald J., Whelan J., 2005. Isotopic and Chemical Composition of Natural Gas from the Potato Hills Field, Southeastern Oklahoma: Evidence for an Abiogenic Origin? ''AAPG Conference, Calgary, Canada 2005.'' [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/extended/seewald/seewald.htm Abstract] -->
<!-- Dead note "Barker2005": Barker C., 2005. The Complementary Roles of Kinetics and Thermodynamics in the Generation and Preservation of Oil and Gas. ''AAPG Conference, Calgary, Canada 2005.'' [http://www.searchanddiscovery.com/documents/abstracts/2005research_calgary/abstracts/short/barker.htm Abstract] -->
 
==External links==
*[https://dco.gl.ciw.edu/] Deep Carbon Observatory
*[http://www.nytimes.com/1995/09/26/science/geochemist-says-oil-fieldsmay-be-refilled-naturally.html?pagewanted=all "Geochemist Says Oil FieldsMay Be Refilled Naturally"], New York Times article by Malcolm W. Browne, September 26, 1995
*[http://www.fromthewilderness.com/free/ww3/102104_no_free_pt1.shtml "No Free Lunch, Part 1: A Critique of Thomas Gold's Claims for Abiotic Oil"], by Jean Laherrere, in ''From The Wilderness''
*[http://www.fromthewilderness.com/free/ww3/011205_no_free_pt2.shtml "No Free Lunch, Part 2: If Abiotic Oil Exists, Where Is It?"], by Dale Allen Pfeiffer, in ''From The Wilderness''
*[http://trilogymedia.com.au/Thomas_Gold/usgs.html The Origin of Methane (and Oil) in the Crust of the Earth], Thomas Gold <!--original link http://www.people.cornell.edu/pages/tg21/usgs.html -->
*[http://www.searchanddiscovery.net/documents/abstracts/2005research_calgary/index.htm abstracts from AAPG Origin of Petroleum Conference] 06/18/05 Calgary Alberta, Canada
*[http://www.aapg.org/explorer/2002/11nov/abiogenic.cfm Gas Origin Theories to be Studied], Abiogenic Gas Debate 11:2002 ([[AAPG Explorer]])
*[http://www.gasresources.net/index.htm Gas Resources Corporation] - J. F. Kenney's collection of documents
<!-- Dead note "Protoil1": CSIRO Petroleum Research, [http://www.dpr.csiro.au/ourcapabilities/petroleumgeoscience/organicgeochemistry/projects/proterozoicoilinclusions/ Proterozoic oils]  -->
<!-- Dead note "Protoil2": [http://www.ucmp.berkeley.edu/bacteria/cyanofr.html proterozoic stromatolite]. -->
<!-- Dead link * [http://www.geosci.usyd.edu.au/about/people/staff/dutkiewicz.html Publications of A. Dutkiewicz] on Proterozoil oils (reference list and bibliography). -->
 
{{DEFAULTSORT:Abiogenic Petroleum Origin}}
[[Category:Peak oil]]
[[Category:Extremophiles]]
[[Category:Biological hypotheses]]
[[Category:Petroleum geology]]
[[Category:Hypothetical processes]]

Latest revision as of 02:41, 13 November 2014

I am Allan from Moholm. I am learning to play the Trumpet. Other hobbies are Racquetball.

My homepage; Hostgator Coupons (http://dawonls.dothome.co.kr/db/?document_srl=265300)