Karush–Kuhn–Tucker conditions: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
f needs to be concave and g needs to be convex
en>Qwertyus
→‎Nonlinear optimization problem: move text out of \text{}
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{redirect|Li2|the molecule with formula Li<sub>2</sub>|dilithium}}
Hi there, I am Alyson Boon  online psychic chat - [http://www.seekavideo.com/playlist/2199/video/ http://www.seekavideo.com/playlist/2199/video/] - even though it is not the name on my beginning certificate. My day occupation is an info officer but I've currently applied  [http://checkmates.co.za/index.php?do=/profile-56347/info/ tarot card readings] for another 1. What me and my family members adore is doing ballet but I've been using on new issues recently. Alaska is the only place I've been residing in but now I'm considering other options.<br><br>My homepage; [http://www.herandkingscounty.com/content/information-and-facts-you-must-know-about-hobbies telephone psychic]
 
{{See also|polylogarithm#Dilogarithm}}
{{technical|date=November 2012}}
In [[mathematics]], '''Spence's function''', or '''dilogarithm''', denoted as Li<sub>2</sub>(''z''), is a particular case of the [[polylogarithm]]. Two related [[special functions]] are referred to as Spence's function, the dilogarithm itself:
::<math>
\operatorname{Li}_2(z) = -\int_0^z{\ln(1-u) \over u}\, \mathrm{d}u \text{, }z \in\mathbb{C} \setminus [1,\infty)
</math>
and its reflection.
For <math>|z|<1</math> an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):
::<math>
\operatorname{Li}_2(z) = \sum_{k=1}^\infty {z^k \over k^2}.
</math>
 
Alternatively, the dilogarithm function is sometimes defined as
::<math>
\int_{1}^{v} \frac{ \ln t }{ 1 -t } \mathrm{d}t = \operatorname{Li}_2(1-v).
</math>
 
In [[hyperbolic geometry]] the dilogarithm <math>\operatorname{Li}_2(z)
</math> occurs as the [[hyperbolic volume]] of an [[ideal simplex]] whose ideal vertices have [[cross ratio]] <math>z</math>. '''[[Lobachevsky's function]]''' and '''[[Clausen's function]]''' are closely related functions.
 
William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.<ref>http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Spence.html</ref> He was at school with [[John Galt (novelist)|John Galt]],<ref>http://www.biographi.ca/009004-119.01-e.php?BioId=37522</ref> who later wrote a biographical essay on Spence.
 
==Identities==
:<math>\operatorname{Li}_2(z)+\operatorname{Li}_2(-z)=\frac{1}{2}\operatorname{Li}_2(z^2)</math><ref name="Zagier">Zagier</ref>
:<math>\operatorname{Li}_2(1-z)+\operatorname{Li}_2\left(1-\frac{1}{z}\right)=-\frac{\ln^2z}{2}</math><ref name="MathWorld">{{MathWorld|title=Dilogarithm|urlname=Dilogarithm}}</ref>
:<math>\operatorname{Li}_2(z)+\operatorname{Li}_2(1-z)=\frac{{\pi}^2}{6}-\ln z \cdot\ln(1-z) </math><ref name="Zagier"/>
:<math>\operatorname{Li}_2(-z)-\operatorname{Li}_2(1-z)+\frac{1}{2}\operatorname{Li}_2(1-z^2)=-\frac  {{\pi}^2}{12}-\ln z \cdot \ln(z+1)</math><ref name="MathWorld"/>
:<math>\operatorname{Li}_2(z) +\operatorname{Li}_2(\frac{1}{z}) = - \frac{\pi^2}{6} - \frac{1}{2}\ln^2(-z)</math><ref name="Zagier"/>
 
==Particular value identities==
:<math>\operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}-\frac{\ln^23}{6}</math><ref name="MathWorld"/>
:<math>\operatorname{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\ln2\cdot \ln3-\frac{\ln^22}{2}-\frac{\ln^23}{3}  </math><ref name="MathWorld"/>
:<math>\operatorname{Li}_2\left(\frac{1}{4}\right)+\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}+2\ln2\ln3-2\ln^22-\frac{2}{3}\ln^23</math> <ref name="MathWorld"/>
:<math>\operatorname{Li}_2\left(-\frac{1}{3}\right)-\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\frac{1}{6}\ln^23</math> <ref name="MathWorld"/>
:<math>\operatorname{Li}_2\left(-\frac{1}{8}\right)+\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{1}{2}\ln^2{\frac{9}{8}}</math><ref name="MathWorld"/>
:<math>36\operatorname{Li}_2\left(\frac{1}{2}\right)-36\operatorname{Li}_2\left(\frac{1}{4}\right)-12\operatorname{Li}_2\left(\frac{1}{8}\right)+6\operatorname{Li}_2\left(\frac{1}{64}\right)={\pi}^2</math>
 
==Special values==
:<math>\operatorname{Li}_2(-1)=-\frac{{\pi}^2}{12}</math>
:<math>\operatorname{Li}_2(0)=0</math>
:<math>\operatorname{Li}_2\left(\frac{1}{2}\right)=\frac{{\pi}^2}{12}-\frac{\ln^2 2}{2} </math>
:<math>\operatorname{Li}_2(1)=\frac{{\pi}^2}{6}</math>
:<math>\operatorname{Li}_2(2)=\frac{{\pi}^2}{4}-i\pi\ln2</math>
:<math>\operatorname{Li}_2\left(-\frac{\sqrt5-1}{2}\right)=-\frac{{\pi}^2}{15}+\frac{1}{2}\ln^2 \frac{\sqrt5-1}{2} </math>
:::::::<math>=-\frac{{\pi}^2}{15}+\frac{1}{2}\operatorname{arcsch}^2 2</math>
:<math>\operatorname{Li}_2\left(-\frac{\sqrt5+1}{2}\right)=-\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2}</math>
:::::::<math>=-\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2</math>
:<math>\operatorname{Li}_2\left(\frac{3+\sqrt5}{2}\right)=\frac{{\pi}^2}{15}-\frac{1}{2}\ln^2 \frac{\sqrt5-1}{2}</math>
:::::::<math>=\frac{{\pi}^2}{15}-\frac{1}{2}\operatorname{arcsch}^2 2</math>
:<math>\operatorname{Li}_2\left(\frac{\sqrt5+1}{2}\right)=\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5-1}{2}</math>
:::::::<math>=\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2</math>
 
==Notes==
{{Reflist}}
 
==References==
*{{Cite book | last1=Lewin | first1=L. | title=Dilogarithms and associated functions | publisher=Macdonald | location=London | others=Foreword by J. C. P. Miller | mr=0105524 | year=1958}}
* {{cite journal|first1=Robert
|last1=Morris
|journal=Math. Comp.
|year=1979
|title=The dilogarithm function of a real argument
|pages=778–787
|volume=33
|number=146
|doi=10.1090/S0025-5718-1979-0521291-X
|mr=521291
}}
* {{cite journal
|first=J. H.
|last1=Loxton
|title=Special values of the dilogarithm
|journal=Acta Arith.
|year=1984
|volume=18
|number=2
|pages=155–166
|url=http://pldml.icm.edu.pl/mathbwn/element/bwmeta1.element.bwnjournal-article-aav43i2p155bwm?q=bwmeta1.element.bwnjournal-number-aa-1983-1984-43-2&qt=CHILDREN-STATELESS
|mr=0736728
}}
* {{cite arxiv
|first=Anatol N.
|last=Kirillov
|title=Dilogarithm identities
|eprint=hep-th/9408113
|year=1994
}}
* {{cite journal
|first1=Carlos
|last1=Osacar
|first2=Jesus
|last2=Palacian
|first3=Manuel
|last3=Palacios
|title=Numerical evaluation of the dilogarithm of complex argument
|year=1995
|volume=62
|number=1
|pages=93–98
|journal=Celestial Mech. Dynam. Astron.
|doi=10.1007/BF00692071
}}
* {{ cite journal
|journal=Front. Number Theory, Physics, Geom. II
|title=The Dilogarithm Function
|first=Don
|last=Zagier
|year=2007
|doi=10.1007/978-3-540-30308-4_1
|pages=3–65
|url=http://maths.dur.ac.uk/~dma0hg/dilog.pdf
}}
 
==Further reading==
* {{cite book | last=Bloch | first=Spencer J. | authorlink=Spencer Bloch | title=Higher regulators, algebraic ''K''-theory, and zeta functions of elliptic curves | series=CRM Monograph Series | volume=11 | location=Providence, RI | publisher=[[American Mathematical Society]] | year=2000 | isbn=0-8218-2114-8 | zbl=0958.19001 }}
 
== External links ==
*[http://dlmf.nist.gov/25.12 NIST Digital Library of Mathematical Functions: Dilogarithm]
* {{MathWorld|title=Dilogarithm|urlname=Dilogarithm}}
[[Category:Special functions]]

Latest revision as of 10:12, 4 August 2014

Hi there, I am Alyson Boon online psychic chat - http://www.seekavideo.com/playlist/2199/video/ - even though it is not the name on my beginning certificate. My day occupation is an info officer but I've currently applied tarot card readings for another 1. What me and my family members adore is doing ballet but I've been using on new issues recently. Alaska is the only place I've been residing in but now I'm considering other options.

My homepage; telephone psychic