Leidenfrost effect: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Cwkmail
→‎Effect: added Boutigny's full name and dates
en>Tom.Reding
m WP:GenFixes (page/s, endash, &nbsp, unicodify, and/or concising wikilinks, etc.), et al., ed., ref cleanup using AWB
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The '''Liouville function''', denoted by λ(''n'') and named after [[Joseph Liouville]], is an important [[function (mathematics)|function]] in [[number theory]].
Hi there! :) My name is Kisha, I'm a student studying Latin American Studies from Cranston, United States.<br><br>Take a look at my site - [http://Www.Helmtechnologiesgroup.com/2014/08/05/fifa-15-coin-generator/ fifa 15 coin Hack]
 
If ''n'' is a positive [[integer]], then λ(''n'') is defined as:
 
:<math>\lambda(n) = (-1)^{\Omega(n)},\,\! </math>
 
where [[Big Omega function|&Omega;(''n'')]] is the number of [[prime number|prime]] [[divisor|factors]] of ''n'', counted with multiplicity {{OEIS|A008836}}.
 
λ is [[multiplicative function|completely multiplicative]] since Ω(''n'') is completely [[additive function|additive]]. The number one has no prime factors, so Ω(1) = 0 and therefore λ(1) = 1. The Liouville function satisfies the [[Identity (mathematics)|identity]]:
 
:<math>
\sum_{d|n}\lambda(d) =
\begin{cases}
1 & \text{if }n\text{ is a perfect square,} \\
0 & \text{otherwise.}
\end{cases}
</math>
 
The Liouville function's [[Dirichlet inverse]] is the absolute value of the [[Möbius function]].
 
==Series==
The [[Dirichlet series]] for the Liouville function gives the [[Riemann zeta function]] as
 
:<math>\frac{\zeta(2s)}{\zeta(s)} = \sum_{n=1}^\infty \frac{\lambda(n)}{n^s}.</math>
 
The [[Lambert series]] for the Liouville function is
 
:<math>\sum_{n=1}^\infty \frac{\lambda(n)q^n}{1-q^n} =
\sum_{n=1}^\infty q^{n^2} =
\frac{1}{2}\left(\vartheta_3(q)-1\right),</math>
 
where <math>\vartheta_3(q)</math> is the [[Jacobi theta function]].
 
==Conjectures==
<div style="float: right; clear: right">
[[Image:Liouville.svg|thumb|none|Summatory Liouville function ''L''(''n'') up to ''n''&nbsp;=&nbsp;10<sup>4</sup>. The readily visible oscillations are due to the first non-trivial zero of the Riemann zeta function.]]
[[Image:Liouville-big.svg|thumb|none|Summatory Liouville function ''L''(''n'') up to ''n''&nbsp;=&nbsp;10<sup>7</sup>. Note the apparent [[scale invariance]] of the oscillations.]]
[[Image:Liouville-log.svg|thumb|none|Logarithmic graph of the negative of the summatory Liouville function ''L''(''n'') up to ''n''&nbsp;=&nbsp;2&nbsp;×&nbsp;10<sup>9</sup>. The green spike shows the function itself (not its negative) in the narrow region where the [[Pólya conjecture]]  fails; the blue curve shows the oscillatory contribution of the first Riemann zero.]]
[[Image:Liouville-harmonic.svg|thumb|none|Harmonic Summatory Liouville function ''M''(''n'') up to ''n''&nbsp;=&nbsp;10<sup>3</sup>]]
</div>
 
The [[Pólya conjecture]] is a conjecture made by [[George Pólya]] in 1919. Defining
 
: <math>L(n) = \sum_{k=1}^n \lambda(k), </math>
 
the conjecture states that <math>L(n)\leq 0</math> for ''n''&nbsp;>&nbsp;1. This turned out to be false.  The smallest counter-example is ''n''&nbsp;=&nbsp;906150257, found by Minoru Tanaka in 1980. It has since been shown that ''L''(''n'')&nbsp;>&nbsp;0.0618672√''n'' for infinitely many positive integers ''n'',<ref>P. Borwein, R. Ferguson, and M. J. Mossinghoff, ''Sign Changes in Sums of the Liouville Function'', Mathematics of Computation 77 (2008), no. 263, 1681&ndash;1694.</ref> while it can also be shown that ''L''(''n'')&nbsp;<&nbsp;-1.3892783√''n'' for infinitely many positive integers ''n''.
 
Define the related sum
 
: <math>T(n) = \sum_{k=1}^n \frac{\lambda(k)}{k}.</math>
 
It was open for some time whether ''T''(''n'')&nbsp;≥&nbsp;0 for sufficiently big ''n'' ≥ ''n''<sub>0</sub> (this "conjecture" is occasionally (but incorrectly) attributed to [[Pál Turán]]).  This was then disproved by [[C. Brian Haselgrove|Haselgrove]] in 1958 (see the reference below), who showed that ''T''(''n'') takes negative values infinitely often. A confirmation of this positivity conjecture would have led to a proof of the [[Riemann hypothesis]], as was shown by Pál Turán.
 
==References==
{{Reflist}}
* {{cite journal | last=Polya | first=G. | title=Verschiedene Bemerkungen zur Zahlentheorie | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | volume=28 | year=1919 | pages=31–40 }}
* {{cite journal|last1=Haselgrove|first1=C. B. |title=A disproof of a conjecture of Polya
|journal=Mathematika |volume=5|number=2 |year=1958 |pages=141–145 | doi=10.1112/S0025579300001480 | issn=0025-5793 | mr=0104638 | zbl=0085.27102 }}
* {{cite journal|last1=Lehman| first1=R. | title=On Liouville's function
|journal=Math. Comp. |volume=14 |year=1960 | pages=311&ndash;320|doi=10.1090/S0025-5718-1960-0120198-5
|mr=0120198}}
* {{cite journal|first1=M. |last1= Tanaka |title=A Numerical Investigation on Cumulative Sum of the Liouville Function | journal=Tokyo Journal of Mathematics |volume=3 |pages=187&ndash;189 |year=1980}}
* {{mathworld|urlname=LiouvilleFunction|title=Liouville Function}}
* {{springer|author=A.F. Lavrik|title=Liouville function|id=L/l059620}}
 
{{DEFAULTSORT:Liouville Function}}
[[Category:Multiplicative functions]]

Latest revision as of 19:58, 7 January 2015

Hi there! :) My name is Kisha, I'm a student studying Latin American Studies from Cranston, United States.

Take a look at my site - fifa 15 coin Hack