Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{| border="1" style="float: right; border-collapse: collapse; margin: 0 0 0 1em;"
<!-- To obtain a blank version of this page, type {{chembox supplement}} and save the page -->
| colspan="2" align="center" | {{Irrational numbers}}
 
This page provides supplementary chemical data on [[ammonia]].
== Structure and properties == <!-- KEEP this header, it is linked to from the infobox on the main article page -->
 
{| border="1" cellspacing="0" cellpadding="3" style="margin: 0 0 0 0.5em; background: #FFFFFF; border-collapse: collapse; border-color: #C0C090;"
|-
! {{chembox header}} | Molecular structure
|-
| [[Point group]]
| C<sub>3v</sub>
|-
| [[Bond length]]
| 101.7 [[picometre|pm]] (N&ndash;H)
|-
| [[Bond angle]]
| 107.8° (H&ndash;N&ndash;H)
|-
| [[Bond strength (chemistry)|Bond strength]]
| 435 kJ/mol (H&ndash;NH<sub>2</sub>)
|-
! {{chembox header}} | Crystal data
|-
| [[Crystal structure]] <!-- omit if not a solid -->
| ? <!-- e.g. [[triclinic]], [[monoclinic]], [[orthorhombic]], [[hexagonal]], [[rhombohedral|trigonal]], [[tetragonal]], [[cubic]], and mention "close packed" or similar.  You may also cite what class it belongs to, e.g. [[Cadmium chloride#Crystal structure|CdCl<sub>2</sub>]]  -->
|-
! {{chembox header}} | Properties
|-
|-
|[[Binary numeral system|Binary]]
| [[Dipole#Molecular dipoles|Dipole moment]]
| {{gaps|1.00110|01110|11101...}}
| 1.46 [[Debye|D]]
|-
|-
| [[Decimal]]
| [[Dielectric constant]]
| {{gaps|1.20205|69031|59594|2854...}}
| 22 ε<sub>0</sub> at 239 K
|-
|-
| [[Hexadecimal]]
| [[Magnetic susceptibility]]
| {{gaps|1.33BA0|04F00|621383...}}
| diamagnetic
|-
|-
| [[Continued fraction]]
| [[Acid dissociation constant|Acidity of NH<sub>4</sub><sup>+</sup>]] ([[Acid dissociation constant|p''K''<sub>a</sub>]])
| <math>1 + \frac{1}{4 + \cfrac{1}{1 + \cfrac{1}{18 + \cfrac{1}{\ddots\qquad{}}}}}</math><br><small>Note that this continuing fraction is not [[Periodic continued fraction|periodic]].</small>
| 9.25
|}
|}


In [[mathematics]], '''Apéry's constant''' is a number that occurs in a variety of situations. It arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's [[gyromagnetic ratio]] using quantum electrodynamics. It also arises in conjunction with the [[gamma function]] when solving certain integrals involving exponential functions in a quotient which appear occasionally in physics, for instance when evaluating the two-dimensional case of the [[Debye model]] and the [[Stefan–Boltzmann law]].
== Thermodynamic properties == <!-- KEEP this header, it is linked to from the infobox on the main article page -->
It is defined as the number ζ(3),


:<math>\zeta(3)=\sum_{k=1}^\infty\frac{1}{k^3}=1+\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \frac{1}{6^3} + \frac{1}{7^3} + \frac{1}{8^3} + \frac{1}{9^3} + \cdots\,\!</math>
{| border="1" cellspacing="0" cellpadding="6" style="margin: 0 0 0 0.5em; background: #FFFFFF; border-collapse: collapse; border-color: #C0C090;"
! {{chembox header}} | Phase behavior
|-
| [[Triple point]]
| 195.4 K (–77.75 °C), 6.060 k[[Pascal (unit)|Pa]]
|-
| [[Critical point (thermodynamics)|Critical point]]
| 405.5 K (132.3 °C), 11.300 M[[Pascal (unit)|Pa]]
|-
| [[Standard enthalpy change of fusion|Std enthalpy change<br/>of fusion]], Δ<sub>fus</sub>''H''<sup><s>o</s></sup>
| +5.653 kJ/mol
|-
| [[Standard entropy change of fusion|Std entropy change<br/>of fusion]], Δ<sub>fus</sub>''S''<sup><s>o</s></sup>
| +28.93 J/(mol·K)
|-
| [[Standard enthalpy change of vaporization|Std enthalpy change<br/>of vaporization]], Δ<sub>vap</sub>''H''<sup><s>o</s></sup>
| +23.35 kJ/mol at [[boiling point|BP]] of –33.4 °C
|-
| [[Standard entropy change of vaporization|Std entropy change<br/>of vaporization]], Δ<sub>vap</sub>''S''<sup><s>o</s></sup>
| +97.41 J/(mol·K) at [[boiling point|BP]] of –33.4 °C
|-
! {{chembox header}} | Solid properties
|-
| [[Standard enthalpy change of formation|Std enthalpy change<br/>of formation]], Δ<sub>f</sub>''H''<sup><s>o</s></sup><sub>solid</sub>
| ? kJ/mol
|-
| [[Standard molar entropy]],<br/>''S''<sup><s>o</s></sup><sub>solid</sub>
| ? J/(mol K)
|-
| [[Heat capacity]], ''c<sub>p</sub>''
| ? J/(mol K)
|-
! {{chembox header}} | Liquid properties
|-
| [[Standard enthalpy change of formation|Std enthalpy change<br/>of formation]], Δ<sub>f</sub>''H''<sup><s>o</s></sup><sub>liquid</sub>
| ? kJ/mol
|-
| [[Standard molar entropy]],<br/>''S''<sup><s>o</s></sup><sub>liquid</sub>
| ? J/(mol K)
|-
| [[Heat capacity]], ''c<sub>p</sub>''
| 80.80 J/(mol K)
|-
! {{chembox header}} | Gas properties
|-
| [[Standard enthalpy change of formation|Std enthalpy change<br/>of formation]], Δ<sub>f</sub>''H''<sup><s>o</s></sup><sub>gas</sub>
| &minus;45.92 kJ/mol
|-
| [[Standard molar entropy]],<br/>''S''<sup><s>o</s></sup><sub>gas</sub>
| 192.77 J/(mol K)
|-
| [[Heat capacity]], ''c<sub>p</sub>''
| 35.06 J/(mol K)
|-
| [[Heat capacity ratio]], ''γ''<br>at 15°C
| 1.310
|-
| [[Van der Waals equation|van der Waals' constants]]
| a = 422.5 liter<sup>2</sup> k[[Pascal (unit)|Pa]] / mole<sup>2</sup><br> b = 0.03707 liter / mole
|-
|}


where ζ is the [[Riemann zeta function]]. It has an approximate value of {{harv|Wedeniwski|2001}}
==Vapor-Liquid Equilibrium Data==
{| border="1" cellspacing="0" cellpadding="6" style="margin: 0 0 0 0.5em; background: white; border-collapse: collapse; border-color: #C0C090;"
|-
| {{chembox header}} | '''P in mm Hg''' || 1 || 10 || 40 || 100 || 400 || 760 || 1520 || 3800 || 7600 || 15600 || 30400 || 45600
|-
| {{chembox header}} | '''T in °C''' || –109.1<sub>(s)</sub> || –91.9<sub>(s)</sub> || –79.2<sub>(s)</sub> || –68.4 || –45.4 || –33.6 || –18.7 || 4.7 || 25.7 || 50.1 || 78.9 || 98.3
|}
Table data (above) obtained from ''CRC Handbook of Chemistry and Physics'' 44th ed. The (s) notation indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid.


:&zeta;(3) = {{gaps|1.20205|69031|59594|28539|97381|61511|44999|07649|86292...}} &nbsp; {{OEIS|id=A002117}}.
[[Image:LogAmmoniaVaporPressure.png|thumb|666px|left|'''log<sub>10</sub> of anydrous Ammonia vapor pressure.''' Uses formula shown below.]]{{Clear}}
Vapor pressure formula for ammonia:<ref>Lange's Handbook of Chemistry, 10th ed. page 1436</ref>


The [[reciprocal (mathematics)|reciprocal]] of this [[constant (mathematics)|constant]] is the [[probability]] that any three [[positive integer]]s, chosen at random, will be [[relatively prime]] (in the sense that as ''N ''goes to infinity, the probability that three positive integers less than ''N'' chosen uniformly at random will be relatively prime approaches this value).
:::log<sub>10</sub>(P) = A &nbsp;&nbsp;–&nbsp;&nbsp; B / (T – C)


==Apéry's theorem==
where ''P'' is pressure in k[[pascal (unit)|Pa]] and ''T'' is temperature in [[kelvin]]s
{{main|Apéry's theorem}}


This value was named for [[Roger Apéry]] (1916–1994), who in 1978 proved it to be [[irrational number|irrational]]. This result is known as ''[[Apéry's theorem]]''. The original proof is complex and hard to grasp, and shorter proofs have been found later, using [[Legendre polynomials]].  It is not known whether Apéry's constant is [[transcendental number|transcendental]].
:::A = 6.67956; B = 1002.711; C = 25.215 &nbsp; for T = 190 K through 333 K


Work by [[Wadim Zudilin]] and Tanguy Rivoal has shown that infinitely many of the numbers ζ(2''n''+1) must be irrational,<ref>{{Citation |author=T. Rivoal |title=La fonction zeta de Riemann prend une infnité de valuers irrationnelles aux entiers impairs |journal=Comptes Rendus de l'Académie des Sciences. Série I. Mathématique |volume=331 |year=2000 |pages=267–270 |postscript=.}}</ref> and even that at least one of the numbers ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational.<ref>{{Citation |author=W. Zudilin |title=One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational |journal=Russ. Math. Surv. |year=2001 |volume=56 |pages=774–776 |doi=10.1070/RM2001v056n04ABEH000427 |postscript=. |issue=4}}</ref>
::&nbsp;


==Series representation==
{| border="0" cellpadding="0" cellspacing="0"
In 1772, [[Leonhard Euler]] {{harv|Euler|1773}} gave the series representation {{harv|Srivastava|2000|loc=p. 571 (1.11)}}:
|-----
| valign="top" width="60%" |
{| border="1" cellspacing="0" cellpadding="6" style="margin: 0 0 0 0.5em; background: {{{bgc|white}}}; border-collapse: collapse; border-color: {{{bc|#C0C090}}};"
! {{chembox header}} colspan="5" | Vapor over Anhydrous Ammonia<ref>Lange's Handbook of Chemistry, 10th ed. page 1451 and 1468</ref>
|-
| bgcolor="E0E0E0" align="center" | Temp.
| bgcolor="E0E0E0" align="center" | Pressure
| bgcolor="E0E0E0" align="center" | ''ρ'' of liquid
| bgcolor="E0E0E0" align="center" | ''ρ'' of vapor
| bgcolor="E0E0E0" align="center" | ''Δ''<sub>vap</sub>''H''
|-
| –78 °C || 5.90 k[[Pascal (unit)|Pa]]
| ||
|-
| –75 °C || 7.93 kPa
| 0.73094 g/cm<sup>3</sup>
| 7.8241&times;10<sup>−5</sup> g/cm<sup>3</sup>
|
|-
| –70 °C || 10.92 kPa
| 0.72527 g/cm<sup>3</sup>
| 1.1141&times;10<sup>−4</sup> g/cm<sup>3</sup>
|
|-
| –65 °C || 15.61 kPa
| 0.71953 g/cm<sup>3</sup>
| 1.5552&times;10<sup>−4</sup> g/cm<sup>3</sup>
|
|-
| –60 °C || 21.90 kPa
| 0.71378 g/cm<sup>3</sup>
| 2.1321&times;10<sup>−4</sup> g/cm<sup>3</sup>
|
|-
| –55 °C || 30.16 kPa
| 0.70791 g/cm<sup>3</sup>
| 2.8596&times;10<sup>−4</sup> g/cm<sup>3</sup>
|
|-
| –50 °C || 40.87 kPa
| 0.70200 g/cm<sup>3</sup>
| 3.8158&times;10<sup>−4</sup> g/cm<sup>3</sup>
| 1417 J/g
|-
| –45 °C || 54.54 kPa
| 0.69604 g/cm<sup>3</sup>
| 4.9940&times;10<sup>−4</sup> g/cm<sup>3</sup>
| 1404 J/g
|-
| –40 °C || 71.77 kPa
| 0.68999 g/cm<sup>3</sup>
| 6.4508&times;10<sup>−4</sup> g/cm<sup>3</sup>
| 1390 J/g
|-
| –35 °C || 93.19 kPa
| 0.68385 g/cm<sup>3</sup>
| 8.2318&times;10<sup>−4</sup> g/cm<sup>3</sup>
| 1375 J/g
|-
| –30 °C || 119.6 kPa
| 0.67764 g/cm<sup>3</sup>
| 1.0386&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1361 J/g
|-
| –25 °C || 151.6 kPa
| 0.67137 g/cm<sup>3</sup>
| 1.2969&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1345 J/g
|-
| –20 °C || 190.2 kPa
| 0.66503 g/cm<sup>3</sup>
| 1.6039&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1330 J/g
|-
| –15 °C || 236.3 kPa
| 0.65854 g/cm<sup>3</sup>
| 1.9659&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1314 J/g
|-
| –10 °C || 290.8 kPa
| 0.65198 g/cm<sup>3</sup>
| 2.3874&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1297 J/g
|-
| –5 °C || 354.8 kPa
| 0.64533 g/cm<sup>3</sup>
| 2.8827&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1280 J/g
|-
| &nbsp;0 °C || 429.4 kPa
| 0.63857 g/cm<sup>3</sup>
| 3.4528&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1263 J/g
|-
| &nbsp;5 °C || 515.7 kPa
| 0.63167 g/cm<sup>3</sup>
| 4.1086&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1245 J/g
|-
| &nbsp;10 °C || 614.9 kPa
| 0.62469 g/cm<sup>3</sup>
| 4.8593&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1226 J/g
|-
| &nbsp;15 °C || 728.3 kPa
| 0.61755 g/cm<sup>3</sup>
| 5.7153&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1207 J/g
|-
| &nbsp;20 °C || 857.1 kPa
| 0.61028 g/cm<sup>3</sup>
| 6.6876&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1187 J/g
|-
| &nbsp;25 °C || 1003 kPa
| 0.60285 g/cm<sup>3</sup>
| 7.7882&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1167 J/g
|-
| &nbsp;30 °C || 1166 kPa
| 0.59524 g/cm<sup>3</sup>
| 9.0310&times;10<sup>−3</sup> g/cm<sup>3</sup>
| 1146 J/g
|-
| &nbsp;35 °C || 1350 kPa
| 0.58816 g/cm<sup>3</sup>
| 1.0431&times;10<sup>−2</sup> g/cm<sup>3</sup>
| 1124 J/g
|-
| &nbsp;40 °C || 1554 kPa
| 0.57948 g/cm<sup>3</sup>
| 1.2006&times;10<sup>−2</sup> g/cm<sup>3</sup>
| 1101 J/g
|-
| &nbsp;45 °C || 1781 kPa
| 0.57130 g/cm<sup>3</sup>
| 1.3775&times;10<sup>−2</sup> g/cm<sup>3</sup>
| 1083 J/g
|-
| &nbsp;50 °C || 2032 kPa
| 0.56287 g/cm<sup>3</sup>
| 1.5761&times;10<sup>−2</sup> g/cm<sup>3</sup>
| 1052 J/g
|-
| &nbsp;55 °C || 2310 kPa
| 0.55420 g/cm<sup>3</sup> ||
||
|-
| &nbsp;60 °C || 2613 kPa
| 0.54523 g/cm<sup>3</sup>
| 2.05&times;10<sup>−2</sup> g/cm<sup>3</sup>
|
|-
| &nbsp;65 °C || 2947 kPa
| 0.53596 g/cm<sup>3</sup> ||
||
|-
| &nbsp;70 °C || 3312 kPa
| 0.52632 g/cm<sup>3</sup>
| 2.65&times;10<sup>−2</sup> g/cm<sup>3</sup>
|
|-
| &nbsp;75 °C || 3711 kPa
| 0.51626 g/cm<sup>3</sup> ||
||
|-
| &nbsp;80 °C || 4144 kPa
| 0.50571 g/cm<sup>3</sup>
| 3.41&times;10<sup>−2</sup> g/cm<sup>3</sup>
|
|-
| &nbsp;85 °C || 4614 kPa
| 0.49463 g/cm<sup>3</sup> ||
||
|-
| &nbsp;90 °C || 5123 kPa
| 0.48290 g/cm<sup>3</sup>
| 4.39&times;10<sup>−2</sup> g/cm<sup>3</sup>
|
|-
| &nbsp;95 °C || 5672 kPa
| 0.47041 g/cm<sup>3</sup> ||
||
|-
| 100 °C || 6264 kPa
| 0.45693 g/cm<sup>3</sup>
| 5.68&times;10<sup>−2</sup> g/cm<sup>3</sup>
|
|-
|-
| bgcolor="E0E0E0" align="center" | Temp.
| bgcolor="E0E0E0" align="center" | Pressure
| bgcolor="E0E0E0" align="center" | ''ρ'' of liquid
| bgcolor="E0E0E0" align="center" | ''ρ'' of vapor
| bgcolor="E0E0E0" align="center" | ''Δ''<sub>vap</sub>''H''
|-
| colspan="5" | The table above gives properties of the [[vapor-liquid equilibrium]] of anhydrous ammonia at various temperatures. The second column is vapor pressure in k[[Pascal (unit)|Pa]]. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.
|}<br clear="left">
| width="4%" |  &nbsp; || valign="top" width="36%" |
{| border="1" cellspacing="0" cellpadding="6" style="margin: 0 0 0 0.5em; background: {{{bgc|white}}}; border-collapse: collapse; border-color: {{{bc|#C0C090}}};"
! {{chembox header}} colspan="4" | Vapor over Aqueous Ammonia Solution<ref>Perman, ''Jour. Chem. Soc. 83 1168 (1903)</ref>
|-
| bgcolor="E0E0E0" align="center" | Temp.
| bgcolor="E0E0E0" align="center" | %wt NH<sub>3</sub>
| bgcolor="E0E0E0" align="center" | Partial Pressure<br>NH<sub>3</sub>
| bgcolor="E0E0E0" align="center" | Partial Pressure<br>H<sub>2</sub>O
|-
| rowspan="5" | 0 °C || 4.72 || 1.52 k[[Pascal (unit)|Pa]]
| 0.68 k[[Pascal (unit)|Pa]]
|-
| 9.15 || 3.31 k[[Pascal (unit)|Pa]] || 0.71 k[[Pascal (unit)|Pa]]
|-
| 14.73 || 6.84 k[[Pascal (unit)|Pa]] || 0.55 k[[Pascal (unit)|Pa]]
|-
| 19.62 || 11.0 k[[Pascal (unit)|Pa]] || 0.40 k[[Pascal (unit)|Pa]]
|-
| 22.90 || 14.9 k[[Pascal (unit)|Pa]] || 0.37 k[[Pascal (unit)|Pa]]
|-
| rowspan="6" | 10 °C || 4.16 || 2.20 k[[Pascal (unit)|Pa]]
| 1.21 k[[Pascal (unit)|Pa]]
|-
| 8.26 || 4.96 k[[Pascal (unit)|Pa]] || 1.17 k[[Pascal (unit)|Pa]]
|-
| 12.32 || 8.56 k[[Pascal (unit)|Pa]] || 1.01 k[[Pascal (unit)|Pa]]
|-
| 15.88 || 12.68 k[[Pascal (unit)|Pa]]
| 0.93 k[[Pascal (unit)|Pa]]
|-
| 20.54 || 19.89 k[[Pascal (unit)|Pa]]
| 0.83 k[[Pascal (unit)|Pa]]
|-
| 21.83 || 22.64 k[[Pascal (unit)|Pa]]
| 0.73 k[[Pascal (unit)|Pa]]
|-
| rowspan="9" | 19.9 °C || 4.18 || 3.65 k[[Pascal (unit)|Pa]]
| 2.19 k[[Pascal (unit)|Pa]]
|-
| 6.50 || 6.11 k[[Pascal (unit)|Pa]] || 2.15 k[[Pascal (unit)|Pa]]
|-
| 6.55 || 6.13 k[[Pascal (unit)|Pa]] || 2.13 k[[Pascal (unit)|Pa]]
|-
| 7.72 || 7.49 k[[Pascal (unit)|Pa]] || 2.08 k[[Pascal (unit)|Pa]]
|-
| 10.15 || 10.75 k[[Pascal (unit)|Pa]]
| 2.01 k[[Pascal (unit)|Pa]]
|-
| 10.75 || 11.51 k[[Pascal (unit)|Pa]]
| 1.96 k[[Pascal (unit)|Pa]]
|-
| 16.64 || 22.14 k[[Pascal (unit)|Pa]]
| 1.72 k[[Pascal (unit)|Pa]]
|-
| 19.40 || 28.74 k[[Pascal (unit)|Pa]]
| 1.64 k[[Pascal (unit)|Pa]]
|-
| 23.37 || 40.32 k[[Pascal (unit)|Pa]]
| 1.37 k[[Pascal (unit)|Pa]]
|-
| rowspan="7" | 30.09 °C || 3.93 || 5.49 k[[Pascal (unit)|Pa]]
| 4.15 k[[Pascal (unit)|Pa]]
|-
| 7.43 || 11.51 k[[Pascal (unit)|Pa]] || 3.89 k[[Pascal (unit)|Pa]]
|-
| 9.75 || 16.00 k[[Pascal (unit)|Pa]] || 3.80 k[[Pascal (unit)|Pa]]
|-
| 12.77 || 23.33 k[[Pascal (unit)|Pa]]
| 3.55 k[[Pascal (unit)|Pa]]
|-
| 17.76 || 38.69 k[[Pascal (unit)|Pa]]
| 3.31 k[[Pascal (unit)|Pa]]
|-
| 17.84 || 38.81 k[[Pascal (unit)|Pa]]
| 3.24 k[[Pascal (unit)|Pa]]
|-
| 21.47 || 53.94 k[[Pascal (unit)|Pa]]
| 2.95 k[[Pascal (unit)|Pa]]
|-
| rowspan="6" | 40 °C || 3.79 || 8.15 k[[Pascal (unit)|Pa]]
| 7.13 k[[Pascal (unit)|Pa]]
|-
| 7.36 || 17.73 k[[Pascal (unit)|Pa]] || 6.76 k[[Pascal (unit)|Pa]]
|-
| 11.06 || 29.13 k[[Pascal (unit)|Pa]]
| 6.55 k[[Pascal (unit)|Pa]]
|-
| 15.55 || 47.14 k[[Pascal (unit)|Pa]]
| 5.52 k[[Pascal (unit)|Pa]]
|-
| 17.33 || 57.02 k[[Pascal (unit)|Pa]]
|
|-
| 20.85 || 76.81 k[[Pascal (unit)|Pa]]
| 5.04 k[[Pascal (unit)|Pa]]
|-
| rowspan="6" | 50 °C || 3.29 || 10.54 k[[Pascal (unit)|Pa]]
| 11.95 k[[Pascal (unit)|Pa]]
|-
| 5.90 || 20.17 k[[Pascal (unit)|Pa]] || 11.61 k[[Pascal (unit)|Pa]]
|-
| 8.91 || 32.88 k[[Pascal (unit)|Pa]] || 11.07 k[[Pascal (unit)|Pa]]
|-
| 11.57 || 45.56 k[[Pascal (unit)|Pa]]
| 10.75 k[[Pascal (unit)|Pa]]
|-
| 14.15 || 60.18 k[[Pascal (unit)|Pa]]
| 10.27 k[[Pascal (unit)|Pa]]
|-
| 14.94 || 64.94 k[[Pascal (unit)|Pa]]
| 10.03 k[[Pascal (unit)|Pa]]
|-
| rowspan="5" | 60 °C || 3.86 || 18.25 k[[Pascal (unit)|Pa]]
| 19.21 k[[Pascal (unit)|Pa]]
|-
| 5.77 || 28.78 k[[Pascal (unit)|Pa]] ||
|-
| 7.78 || 40.05 k[[Pascal (unit)|Pa]] || 18.47 k[[Pascal (unit)|Pa]]
|-
| 9.37 || 50.09 k[[Pascal (unit)|Pa]] || 18.07 k[[Pascal (unit)|Pa]]
|-
| 9.37 || 63.43 k[[Pascal (unit)|Pa]] || 17.39 k[[Pascal (unit)|Pa]]
|-
| bgcolor="E0E0E0" align="center" | Temp.
| bgcolor="E0E0E0" align="center" | %wt NH<sub>3</sub>
| bgcolor="E0E0E0" align="center" | Partial Pressure<br>NH<sub>3</sub>
| bgcolor="E0E0E0" align="center" | Partial Pressure<br>H<sub>2</sub>O
|-
|}<br clear="left">
|}


:<math>\zeta(3)=\frac{\pi^2}{7}
==Heat capacity of liquid and vapor==
\left[ 1-4\sum_{k=1}^\infty \frac {\zeta (2k)} {(2k+1)(2k+2) 2^{2k}} \right]</math>
{|
|- valign="top"
| [[Image:AmmoniaGasHeatCapacity.png|thumb|625px|left|'''Heat capacity, ''c<sub>p</sub>'', of anhydrous ammonia gas.''' Uses polynomial <!-- <math>\scriptstyle c_p (kJ/mol K) = </math><math>\scriptstyle 34.23600 - 0.02214127(T+273.15) + 1.212511 \times 10^{-4}(T+273.15)^2 - 1.088291 \times 10^{07}(T+273.15)^3 + 3.203149 \times 10^{-11}(T+273.15</math> --> obtained from CHERIC.<ref name="cheric_p">{{Cite web|url=http://www.cheric.org/research/kdb/hcprop/cmpsrch.php|title=Pure Components Properties|publisher=Chemical Engineering Research Information Center|accessdate=1 June 2007|format=Queriable database| archiveurl= http://web.archive.org/web/20070603180431/http://www.cheric.org/research/kdb/hcprop/cmpsrch.php| archivedate= 3 June 2007 <!--DASHBot-->| deadurl= no}}</ref>]]
|-
| [[Image:AmmoniaLiquidHeatCapacity.png|thumb|300px|left|'''Heat capacity of anhydrous liquid ammonia.''' Uses polynomial obtained from CHERIC.<ref name="cheric_p"/>]]
|-
|}


which was subsequently rediscovered several times.
== Spectral data == <!-- KEEP this header, it is linked to from the infobox on the main article page -->


[[Ramanujan]] gives several series, which are notable in that they can provide several digits of accuracy per iteration. These include<ref>Bruce C. Berndt, ''Ramanujan's notebooks, Part II'' (1989), Springer-Verlag. ''See chapter 14, formulas 25.1 and 25.3''</ref>:
{| border="1" cellspacing="0" cellpadding="3" style="margin: 0 0 0 0.5em; background: #FFFFFF; border-collapse: collapse; border-color: #C0C090;"
 
! {{chembox header}} | [[UV/VIS spectroscopy|UV-Vis]]
:<math>\zeta(3)=\frac{7}{180}\pi^3 -2
|-
\sum_{k=1}^\infty \frac{1}{k^3 (e^{2\pi k} -1)}</math>
| [[Lambda-max|λ<sub>max</sub>]]
 
| None [[Nanometre|nm]]
[[Simon Plouffe]] has developed other series{{harv|Plouffe|1998}}:
|-
 
| [[molar absorptivity|Extinction coefficient]], ε
:<math>\zeta(3)= 14
| None
\sum_{k=1}^\infty \frac{1}{k^3 \sinh(\pi k)}
|-
-\frac{11}{2}
! {{chembox header}} | [[Infrared|IR]]
\sum_{k=1}^\infty \frac{1}{k^3 (e^{2\pi k} -1)}
-\frac{7}{2}
\sum_{k=1}^\infty \frac{1}{k^3 (e^{2\pi k} +1)}.
</math>
 
Similar relations for the values of <math>\zeta(2n+1)</math> are given in the article [[zeta constants]].
 
Many additional series representations have been found, including:
 
:<math>\zeta(3) = \frac{8}{7} \sum_{k=0}^\infty \frac{1}{(2k+1)^3}</math>
 
:<math>\zeta(3) = \frac{4}{3} \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)^3}</math>
 
:<math>\zeta(3) = \frac{5}{2} \sum_{k=1}^\infty (-1)^{k-1} \frac{(k!)^2}{k^3 (2k)!}</math>
 
:<math>\zeta(3) = \frac{1}{4} \sum_{k=1}^\infty (-1)^{k-1}
\frac{56k^2-32k+5}{(2k-1)^2} \frac{((k-1)!)^3}{(3k)!}</math>
 
:<math>\zeta(3)=\frac{8}{7}-\frac{8}{7}\sum_{k=1}^\infty \frac{{\left( -1 \right) }^k\,2^{-5 + 12\,k}\,k\,
    \left( -3 + 9\,k + 148\,k^2 - 432\,k^3 - 2688\,k^4 + 7168\,k^5 \right) \,
    {k!}^3\,{\left( -1 + 2\,k \right) !}^6}{{\left( -1 + 2\,k \right) }^3\,
    \left( 3\,k \right) !\,{\left( 1 + 4\,k \right) !}^3}</math>
 
:<math>\zeta(3) = \sum_{k=0}^\infty (-1)^k \frac{205k^2 + 250k + 77}{64} \frac{(k!)^{10}}{((2k+1)!)^5}</math>
 
and
 
:<math>\zeta(3) = \sum_{k=0}^\infty (-1)^k \frac{P(k)}{24}
\frac{((2k+1)!(2k)!k!)^3}{(3k+2)!((4k+3)!)^3}</math>
 
where
 
:<math>P(k) = 126392k^5 + 412708k^4 + 531578k^3 + 336367k^2 + 104000k + 12463.\,</math>
 
Some of these have been used to calculate Apéry's constant with several million digits.
 
{{harvtxt|Broadhurst|1998}} gives a series representation that allows arbitrary [[binary digit]]s to be computed, and thus, for the constant to be obtained in nearly [[linear time]], and [[logarithmic space]].
 
==Other formulas==
Apéry's constant can be expressed in terms of the second-order [[polygamma function]] as
 
:<math>\zeta(3) = -\frac{1}{2} \, \psi^{(2)}(1).</math>
 
It can be expressed as the non-periodic  [[continued fraction]] [1; 4, 1, 18, 1, 1, 1, 4, 1, ...] {{OEIS|id=A013631}}.
 
==Known digits==
 
The number of known digits of Apéry's constant ζ(3) has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.
 
{| class="wikitable" style="margin: 1em auto 1em auto"
|+ '''Number of known decimal digits of Apéry's constant ζ(3)'''
! Date || Decimal digits || Computation performed by
|-
|-
| 1735 || 16 || [[Leonhard Euler]]
| Major absorption bands
| 3444, 3337, 1627, 950 [[Wavenumber|cm]]<sup>&minus;1</sup>
|-
|-
| unknown || 16 || [[Adrien-Marie Legendre]]
! {{chembox header}} | [[NMR Spectroscopy|NMR]]
|-
|-
| 1887 || 32 || [[Thomas Joannes Stieltjes]]
| [[Proton NMR]] <!-- Link to image of spectrum -->
| &nbsp;
|-
|-
| 1996 || 520,000 || Greg J. Fee & [[Simon Plouffe]]
| [[Carbon-13 NMR]] <!-- Link to image of spectrum -->
| &nbsp;None - no carbons
|-
|-
| 1997 || 1,000,000 || Bruno Haible & Thomas Papanikolaou
| Other NMR data <!-- Insert special data e.g. <sup>19</sup>F chem. shifts, omit if not used -->
| &nbsp;
|-
|-
| May 1997 || 10,536,006 || Patrick Demichel
! {{chembox header}} | [[Mass Spectrometry|MS]]
|-
|-
| February 1998 || 14,000,074 || Sebastian Wedeniwski
| Masses of <br>main fragments
| 17 (100%)<br/>16(80%)<br/>15(9%)
|-
|-
| March 1998 || 32,000,213 || Sebastian Wedeniwski
|}
 
==Regulatory data==
{| border="1" cellspacing="0" cellpadding="3" style="margin: 0 0 0 0.5em; background: #FFFFFF; border-collapse: collapse; border-color: #C0C090;"
! {{chembox header}} | Regulatory data
|-
|-
| July 1998 || 64,000,091 || Sebastian Wedeniwski
| [[EINECS number]]
| 231-635-3 (''gas'')<br/>215-647-6 (''soln.'')
|-
|-
| December 1998 || 128,000,026 || Sebastian Wedeniwski {{harv|Wedeniwski|2001}}
| EU index number
| 007-001-00-5 (''gas'')<br/>007-001-01-2 (''soln.'')
|-
|-
| September 2001 || 200,001,000 || Shigeru Kondo & Xavier Gourdon
| [[Permissible Exposure Limit|PEL-TWA]] ([[Occupational Safety and Health Administration|OSHA]])
| 50 ppm (35&nbsp;mg/m<sup>3</sup>)
|-
|-
| February 2002 || 600,001,000 || Shigeru Kondo & Xavier Gourdon
| [[IDLH]] ([[NIOSH]])
| 300 ppm
|-
|-
| February 2003 || 1,000,000,000 || Patrick Demichel & Xavier Gourdon
| [[Flash point]]
| 11 °C
|-
|-
| April 2006 || 10,000,000,000 || Shigeru Kondo & Steve Pagliarulo (see {{harvtxt|Gourdon|Sebah|2003}})
| [[Autoignition temperature]]
| 651 °C
|-
|-
| January 2009 || 15,510,000,000 || Alexander J. Yee & Raymond Chan (see {{harvtxt|Yee|Chan|2009}})
| [[Explosive limits]]
| 15&ndash;28%
|-
|-
| March 2009 || 31,026,000,000 || Alexander J. Yee & Raymond Chan (see {{harvtxt|Yee|Chan|2009}})
| [[RTECS]] number
| BO0875000
|-
|-
| September 2010 || 100,000,001,000 || Alexander J. Yee (see [http://www.numberworld.org/digits/Zeta%283%29/ Yee])
|}
|}


==Notes==
== Material Safety Data Sheet == <!-- KEEP this header, it is linked to from the infobox on the main article page -->
{{Reflist}}
 
The handling of this chemical may incur notable safety precautions. It is highly recommend that you seek the Material Safety Datasheet ([[Material safety data sheet|MSDS]]) for this chemical from a reliable source and follow its directions.
*[http://www2.siri.org/msds/index.php SIRI]
*[http://www.sciencestuff.com/msds/C1200.html Science Stuff] (Ammonia Solution)


==References==
==References==
*{{citation
*{{nist}}
| last = Euler
<references/>
| first = Leonhard
 
| authorlink = Leonhard Euler
Except where noted otherwise, data relate to [[standard ambient temperature and pressure]].
| year = 1773
 
| title = Exercitationes analyticae
[[wikipedia:Chemical infobox|Disclaimer]] applies.
| journal = Novi Commentarii academiae scientiarum Petropolitanae
| volume = 17
| pages = 173–204
| url = http://math.dartmouth.edu/~euler/docs/originals/E432.pdf
| language = Latin
| format = PDF
| accessdate = 2008-05-18
}}
* {{cite article
|first=V.
|last=Ramaswami
|title=Notes on Riemann's ζ-function
|year=1934
|journal=J. London Math. Soc.
|volume=9
|pages=165–169
|doi=10.1112/jlms/s1-9.3.165|issue=3}}
* {{citation
|first=Roger
|last=Apéry
|title=Irrationalité de ζ(2) et ζ(3)
|year=1979
|journal=Astérisque|volume=61|pages=11–13}}
* {{Citation
|author=A. van der Poorten
|title=A proof that Euler missed..
|journal=[[The Mathematical Intelligencer]]  
|volume=1
|year=1979
|pages=195–203
|doi=10.1007/BF03028234
|url=http://www.maths.mq.edu.au/~alf/45.pdf
|issue=4}}
* {{cite journal
|journal=El. J. Combinat
|year=1996
|volume=3
|first1=Tewodoros
|last1=Amdeberhan
|url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/v3i1r13
|pages=#R13
|title=Faster and faster convergent series for ζ(3)
}}
*{{cite arxiv| first=D.J.| last=Broadhurst| eprint=math.CA/9803067| title=Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5)| year=1998}}
* {{citation|first=Simon|last=Plouffe|url=http://www.lacim.uqam.ca/~plouffe/identities.html|title=Identities inspired from Ramanujan Notebooks II|year=1998}}
* {{citation|first=Simon|last=Plouffe|url=http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap97.html|title=Zeta(3) or Apery constant to 2000 places|year=undated}}
* {{citation|first=S.|last=Wedeniwski|title=The Value of Zeta(3) to 1,000,000 places|editor=Simon Plouffe|year=2001|publisher=Project Gutenberg}}
* {{citation
| last = Srivastava | first = H. M.
| year = 2000 | month = December
| title = Some Families of Rapidly Convergent Series Representations for the Zeta Functions
| url = http://www.math.nthu.edu.tw/~tjm/abstract/0012/tjm0012_3.pdf
| format = PDF
| journal = Taiwanese Journal of Mathematics
| volume = 4 | issue = 4 | pages = 569–598 
| oclc =36978119
| accessdate = 2008-05-18
}}
* {{cite web
|first1=Xavier
|last1=Gourdon
|first2=Pascal
|last2=Sebah
|url=http://numbers.computation.free.fr/Constants/Zeta3/zeta3.html
|title=The Apéry's constant: z(3)
|year=2003}}
* {{mathworld|title=Apéry's constant|urlname=AperysConstant}}
* {{citation|first1=Alexander J.|last1=Yee|first2=Raymond|last2=Chan|url=http://www.numberworld.org/nagisa_runs/computations.html|title=Large Computations|year=2009}}


{{PlanetMath attribution|id=4021|title=Apéry's constant}}
==External links==
*[http://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Units=SI&Type=IR-SPEC&Index=1#IR-SPEC IR spectrum] (from [[NIST]])


{{DEFAULTSORT:Aperys constant}}
{{Use dmy dates|date=September 2010}}
[[Category:Mathematical constants]]
[[Category:Analytic number theory]]
[[Category:Irrational numbers]]
[[Category:Zeta and L-functions]]


[[ar:ثابتة أبيري]]
{{DEFAULTSORT:Ammonia (Data Page)}}
[[ca:Constant d'Apéry]]
[[Category:Chemical data pages]]
[[da:Apérys konstant]]
[[de:Apéry-Konstante]]
[[es:Constante de Apéry]]
[[fr:Constante d'Apéry]]
[[ko:아페리 상수]]
[[it:Costante di Apéry]]
[[lmo:Custanta da Apéry]]
[[ja:アペリーの定数]]
[[pl:Stała Apéry'ego]]
[[pt:Constante de Apéry]]
[[ru:Постоянная Апери]]
[[tr:Apéry sabiti]]
[[zh:阿培里常数]]

Revision as of 10:51, 14 August 2014


This page provides supplementary chemical data on ammonia.

Structure and properties

Molecular structure
Point group C3v
Bond length 101.7 pm (N–H)
Bond angle 107.8° (H–N–H)
Bond strength 435 kJ/mol (H–NH2)
Crystal data
Crystal structure ?
Properties
Dipole moment 1.46 D
Dielectric constant 22 ε0 at 239 K
Magnetic susceptibility diamagnetic
Acidity of NH4+ (pKa) 9.25

Thermodynamic properties

Phase behavior
Triple point 195.4 K (–77.75 °C), 6.060 kPa
Critical point 405.5 K (132.3 °C), 11.300 MPa
Std enthalpy change
of fusion
, ΔfusHo
+5.653 kJ/mol
Std entropy change
of fusion
, ΔfusSo
+28.93 J/(mol·K)
Std enthalpy change
of vaporization
, ΔvapHo
+23.35 kJ/mol at BP of –33.4 °C
Std entropy change
of vaporization
, ΔvapSo
+97.41 J/(mol·K) at BP of –33.4 °C
Solid properties
Std enthalpy change
of formation
, ΔfHosolid
? kJ/mol
Standard molar entropy,
Sosolid
? J/(mol K)
Heat capacity, cp ? J/(mol K)
Liquid properties
Std enthalpy change
of formation
, ΔfHoliquid
? kJ/mol
Standard molar entropy,
Soliquid
? J/(mol K)
Heat capacity, cp 80.80 J/(mol K)
Gas properties
Std enthalpy change
of formation
, ΔfHogas
−45.92 kJ/mol
Standard molar entropy,
Sogas
192.77 J/(mol K)
Heat capacity, cp 35.06 J/(mol K)
Heat capacity ratio, γ
at 15°C
1.310
van der Waals' constants a = 422.5 liter2 kPa / mole2
b = 0.03707 liter / mole

Vapor-Liquid Equilibrium Data

P in mm Hg 1 10 40 100 400 760 1520 3800 7600 15600 30400 45600
T in °C –109.1(s) –91.9(s) –79.2(s) –68.4 –45.4 –33.6 –18.7 4.7 25.7 50.1 78.9 98.3

Table data (above) obtained from CRC Handbook of Chemistry and Physics 44th ed. The (s) notation indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid.

log10 of anydrous Ammonia vapor pressure. Uses formula shown below.

50 year old Petroleum Engineer Kull from Dawson Creek, spends time with interests such as house brewing, property developers in singapore condo launch and camping. Discovers the beauty in planing a trip to places around the entire world, recently only coming back from .

Vapor pressure formula for ammonia:[1]

log10(P) = A   –   B / (T – C)

where P is pressure in kPa and T is temperature in kelvins

A = 6.67956; B = 1002.711; C = 25.215   for T = 190 K through 333 K
 
Vapor over Anhydrous Ammonia[2]
Temp. Pressure ρ of liquid ρ of vapor ΔvapH
–78 °C 5.90 kPa
–75 °C 7.93 kPa 0.73094 g/cm3 7.8241×10−5 g/cm3
–70 °C 10.92 kPa 0.72527 g/cm3 1.1141×10−4 g/cm3
–65 °C 15.61 kPa 0.71953 g/cm3 1.5552×10−4 g/cm3
–60 °C 21.90 kPa 0.71378 g/cm3 2.1321×10−4 g/cm3
–55 °C 30.16 kPa 0.70791 g/cm3 2.8596×10−4 g/cm3
–50 °C 40.87 kPa 0.70200 g/cm3 3.8158×10−4 g/cm3 1417 J/g
–45 °C 54.54 kPa 0.69604 g/cm3 4.9940×10−4 g/cm3 1404 J/g
–40 °C 71.77 kPa 0.68999 g/cm3 6.4508×10−4 g/cm3 1390 J/g
–35 °C 93.19 kPa 0.68385 g/cm3 8.2318×10−4 g/cm3 1375 J/g
–30 °C 119.6 kPa 0.67764 g/cm3 1.0386×10−3 g/cm3 1361 J/g
–25 °C 151.6 kPa 0.67137 g/cm3 1.2969×10−3 g/cm3 1345 J/g
–20 °C 190.2 kPa 0.66503 g/cm3 1.6039×10−3 g/cm3 1330 J/g
–15 °C 236.3 kPa 0.65854 g/cm3 1.9659×10−3 g/cm3 1314 J/g
–10 °C 290.8 kPa 0.65198 g/cm3 2.3874×10−3 g/cm3 1297 J/g
–5 °C 354.8 kPa 0.64533 g/cm3 2.8827×10−3 g/cm3 1280 J/g
 0 °C 429.4 kPa 0.63857 g/cm3 3.4528×10−3 g/cm3 1263 J/g
 5 °C 515.7 kPa 0.63167 g/cm3 4.1086×10−3 g/cm3 1245 J/g
 10 °C 614.9 kPa 0.62469 g/cm3 4.8593×10−3 g/cm3 1226 J/g
 15 °C 728.3 kPa 0.61755 g/cm3 5.7153×10−3 g/cm3 1207 J/g
 20 °C 857.1 kPa 0.61028 g/cm3 6.6876×10−3 g/cm3 1187 J/g
 25 °C 1003 kPa 0.60285 g/cm3 7.7882×10−3 g/cm3 1167 J/g
 30 °C 1166 kPa 0.59524 g/cm3 9.0310×10−3 g/cm3 1146 J/g
 35 °C 1350 kPa 0.58816 g/cm3 1.0431×10−2 g/cm3 1124 J/g
 40 °C 1554 kPa 0.57948 g/cm3 1.2006×10−2 g/cm3 1101 J/g
 45 °C 1781 kPa 0.57130 g/cm3 1.3775×10−2 g/cm3 1083 J/g
 50 °C 2032 kPa 0.56287 g/cm3 1.5761×10−2 g/cm3 1052 J/g
 55 °C 2310 kPa 0.55420 g/cm3
 60 °C 2613 kPa 0.54523 g/cm3 2.05×10−2 g/cm3
 65 °C 2947 kPa 0.53596 g/cm3
 70 °C 3312 kPa 0.52632 g/cm3 2.65×10−2 g/cm3
 75 °C 3711 kPa 0.51626 g/cm3
 80 °C 4144 kPa 0.50571 g/cm3 3.41×10−2 g/cm3
 85 °C 4614 kPa 0.49463 g/cm3
 90 °C 5123 kPa 0.48290 g/cm3 4.39×10−2 g/cm3
 95 °C 5672 kPa 0.47041 g/cm3
100 °C 6264 kPa 0.45693 g/cm3 5.68×10−2 g/cm3
Temp. Pressure ρ of liquid ρ of vapor ΔvapH
The table above gives properties of the vapor-liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.

 
Vapor over Aqueous Ammonia Solution[3]
Temp. %wt NH3 Partial Pressure
NH3
Partial Pressure
H2O
0 °C 4.72 1.52 kPa 0.68 kPa
9.15 3.31 kPa 0.71 kPa
14.73 6.84 kPa 0.55 kPa
19.62 11.0 kPa 0.40 kPa
22.90 14.9 kPa 0.37 kPa
10 °C 4.16 2.20 kPa 1.21 kPa
8.26 4.96 kPa 1.17 kPa
12.32 8.56 kPa 1.01 kPa
15.88 12.68 kPa 0.93 kPa
20.54 19.89 kPa 0.83 kPa
21.83 22.64 kPa 0.73 kPa
19.9 °C 4.18 3.65 kPa 2.19 kPa
6.50 6.11 kPa 2.15 kPa
6.55 6.13 kPa 2.13 kPa
7.72 7.49 kPa 2.08 kPa
10.15 10.75 kPa 2.01 kPa
10.75 11.51 kPa 1.96 kPa
16.64 22.14 kPa 1.72 kPa
19.40 28.74 kPa 1.64 kPa
23.37 40.32 kPa 1.37 kPa
30.09 °C 3.93 5.49 kPa 4.15 kPa
7.43 11.51 kPa 3.89 kPa
9.75 16.00 kPa 3.80 kPa
12.77 23.33 kPa 3.55 kPa
17.76 38.69 kPa 3.31 kPa
17.84 38.81 kPa 3.24 kPa
21.47 53.94 kPa 2.95 kPa
40 °C 3.79 8.15 kPa 7.13 kPa
7.36 17.73 kPa 6.76 kPa
11.06 29.13 kPa 6.55 kPa
15.55 47.14 kPa 5.52 kPa
17.33 57.02 kPa
20.85 76.81 kPa 5.04 kPa
50 °C 3.29 10.54 kPa 11.95 kPa
5.90 20.17 kPa 11.61 kPa
8.91 32.88 kPa 11.07 kPa
11.57 45.56 kPa 10.75 kPa
14.15 60.18 kPa 10.27 kPa
14.94 64.94 kPa 10.03 kPa
60 °C 3.86 18.25 kPa 19.21 kPa
5.77 28.78 kPa
7.78 40.05 kPa 18.47 kPa
9.37 50.09 kPa 18.07 kPa
9.37 63.43 kPa 17.39 kPa
Temp. %wt NH3 Partial Pressure
NH3
Partial Pressure
H2O

Heat capacity of liquid and vapor

Heat capacity, cp, of anhydrous ammonia gas. Uses polynomial obtained from CHERIC.[4]
Heat capacity of anhydrous liquid ammonia. Uses polynomial obtained from CHERIC.[4]

Spectral data

UV-Vis
λmax None nm
Extinction coefficient, ε None
IR
Major absorption bands 3444, 3337, 1627, 950 cm−1
NMR
Proton NMR  
Carbon-13 NMR  None - no carbons
Other NMR data  
MS
Masses of
main fragments
17 (100%)
16(80%)
15(9%)

Regulatory data

Regulatory data
EINECS number 231-635-3 (gas)
215-647-6 (soln.)
EU index number 007-001-00-5 (gas)
007-001-01-2 (soln.)
PEL-TWA (OSHA) 50 ppm (35 mg/m3)
IDLH (NIOSH) 300 ppm
Flash point 11 °C
Autoignition temperature 651 °C
Explosive limits 15–28%
RTECS number BO0875000

Material Safety Data Sheet

The handling of this chemical may incur notable safety precautions. It is highly recommend that you seek the Material Safety Datasheet (MSDS) for this chemical from a reliable source and follow its directions.

References

  1. Lange's Handbook of Chemistry, 10th ed. page 1436
  2. Lange's Handbook of Chemistry, 10th ed. page 1451 and 1468
  3. Perman, Jour. Chem. Soc. 83 1168 (1903)
  4. 4.0 4.1 Template:Cite web

Except where noted otherwise, data relate to standard ambient temperature and pressure.

Disclaimer applies.

External links

30 year-old Entertainer or Range Artist Wesley from Drumheller, really loves vehicle, property developers properties for sale in singapore singapore and horse racing. Finds inspiration by traveling to Works of Antoni Gaudí.