Metric dimension (graph theory): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>David Eppstein
→‎References: fix typo in what springer records as the title for WG12
en>Gilo1969
fix citation with wikilinks embedded in URL
 
Line 1: Line 1:
[[File:USA 10052 Grand Canyon Luca Galuzzi 2007.jpg|thumb|350px|right|Transverse Isotropy is observed in sedimentary rocks at long wavelengths. Each layer has approximately the same properties in-plane but different properties through-the-thickness.  The plane of each layer is the plane of isotropy and the vertical axis is the axis of symmetry.]]
Ship's Officer Vance Gohr from Creston, really loves snowmobile riding, diet and maintain a journal. Discovers the beauty in visiting spots around the globe, recently just returning from Osun-Osogbo Sacred Grove.<br><br>Also visit my weblog :: [http://tinyurl.com/c7ol20372wou02a simple diet burn fat]
 
A '''transversely isotropic''' material is one with physical properties which are [[symmetry|symmetric]] about an axis that is normal to a plane of [[isotropy]]. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.
 
This type of material exhibits [[hexagonal symmetry]], so the number of independent constants in the (fourth-rank) [[elasticity tensor]] are reduced to 5 (from a total of 21 independent constants in the case of a fully [[Anisotropy|anisotropic]] [[solid]]). The (second-rank) tensors of electrical resistivity, permeability, etc. have 2 independent constants.
 
<!--[[File:Srikant S Padhee 2009.jpg|thumb|right|Transverse Isotropy is observed in composite materials at long wavelengths: The plane of isotropy is perpendicular to the direction of the fiber.]]-->
 
==Example of transversely isotropic materials==
 
An example of a transversely isotropic material is the so-called on-axis unidirectional fiber composite lamina where the fibers are circular in cross section. In a unidirectional composite, the plane normal to the fiber direction can be considered as the isotropic plane, at long wavelengths (low frequencies) of excitation. In the figure above, the fibers would be aligned with the <math>x_2</math> axis, which is normal to the plane of isotropy.
 
In terms of effective properties, geological layers of rocks are often interpreted as being transversely isotropic. Calculating the effective elastic properties of such layers in petrology has been coined '''Backus upscaling''', which is described below.
 
== Material symmetry matrix ==
The material matrix <math>\underline{\underline{\boldsymbol{K}}}</math> has a symmetry with respect to a given [[orthogonal transformation]] (<math>\boldsymbol{A}</math>) if it does not change when subjected to that transformation. 
For invariance of the material properties under such a transformation we require
:<math>
  \boldsymbol{A}\cdot\mathbf{f} = \boldsymbol{K}\cdot(\boldsymbol{A}\cdot\boldsymbol{d}) \implies \mathbf{f} = (\boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A})\cdot\boldsymbol{d}
</math>
Hence the condition for material symmetry is (using the definition of an orthogonal transformation)
:<math>
  \boldsymbol{K} = \boldsymbol{A}^{-1}\cdot\boldsymbol{K}\cdot\boldsymbol{A} = \boldsymbol{A}^{T}\cdot\boldsymbol{K}\cdot\boldsymbol{A}
</math>
Orthogonal transformations can be represented in Cartesian coordinates by a <math>3\times 3</math> matrix <math>\underline{\underline{\boldsymbol{A}}}</math> given by
:<math>
  \underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\
      A_{31} & A_{32} & A_{33} \end{bmatrix}~.
</math>
Therefore the symmetry condition can be written in matrix form as
:<math>
  \underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}}}
</math>
For a transversely isotropic material, the matrix <math>\underline{\underline{\boldsymbol{A}}}</math> has the form
:<math>
  \underline{\underline{\boldsymbol{A}}} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\
      0 & 0 & 1 \end{bmatrix}~.
</math>
where the <math>x_3</math>-axis is the [[axis of symmetry]].  The material matrix remains invariant under rotation by any angle <math>\theta</math> about the <math>x_3</math>-axis.
 
== Transverse isotropy in physics ==
Linear material [[constitutive relation]]s in physics can be expressed in the form
:<math>
  \mathbf{f} = \boldsymbol{K}\cdot\mathbf{d}
</math>
where <math>\mathbf{d},\mathbf{f}</math> are two vectors representing physical quantities and <math>\boldsymbol{K}</math> is a second-order material tensor.  In matrix form,
:<math>
  \underline{\underline{\mathbf{f}}} = \underline{\underline{\boldsymbol{K}}}~\underline{\underline{\mathbf{d}}}
  \implies \begin{bmatrix} f_1\\f_2\\f_3 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\
      K_{31} & K_{32} & K_{33} \end{bmatrix} \begin{bmatrix} d_1\\d_2\\d_3 \end{bmatrix}
</math>
Examples of physical problems that fit the above template are listed in the table below <ref name=Milton>{{cite book |last=Milton|first=G. W.|title=The Theory of Composites|year=2002|publisher=Cambridge University Press|doi=10.2277/0521781256}}</ref>
{| class="wikitable sortable" style="margin:auto;"
|-
! Problem !! <math>\mathbf{f}</math> !! <math>\mathbf{d}</math> !! <math>\boldsymbol{K}</math>
|-
| [[Electrical conduction]] || [[Electrical current]] <br /><math>\mathbf{J}</math> || [[Electric field]] <br /><math>\mathbf{E}</math>|| [[Electrical conductivity]] <br /><math>\boldsymbol{\sigma}</math>
|-
| [[Dielectric]]s || [[Electrical displacement]] <br /><math>\mathbf{D}</math>  || [[Electric field]] <br /><math>\mathbf{E}</math> || [[Electric permittivity]] <br /><math>\boldsymbol{\varepsilon}</math>
|-
| [[Magnetism]]  || [[Electromagnetic induction|Magnetic induction]] <br /><math>\mathbf{B}</math>|| [[Magnetic field]] <br /><math>\mathbf{H}</math>|| [[Magnetic permeability]] <br /><math>\boldsymbol{\mu}</math>
|-
| [[Thermal conduction]] || [[Heat flux]] <br /><math>\mathbf{q}</math>|| [[Temperature gradient]] <br /><math>-\boldsymbol{\nabla}T</math> || [[Thermal conductivity]] <br /><math>\boldsymbol{\kappa}</math>
|-
| [[Diffusion]] || Particle [[flux]] <br /><math>\mathbf{J}</math>|| [[Concentration gradient]]<br /><math>-\boldsymbol{\nabla}c</math> || [[Mass diffusivity|Diffusivity]]<br /> <math>\boldsymbol{D}</math>
|-
| [[Fluid dynamics|Flow]] in [[porous media]] || Weighted fluid [[velocity]] <br /><math>\eta_\mu\mathbf{v}</math>|| [[Pressure gradient]] <br /><math>\boldsymbol{\nabla}P</math>|| [[Fluid permeability]] <br /><math>\boldsymbol{\kappa}</math>
|}
Using <math>\theta=\pi</math> in the <math>\underline{\underline{\boldsymbol{A}}}</math> matrix implies that <math>K_{13} = K_{31} = K_{23} = K_{32} = 0</math>.  Using <math>\theta=\tfrac{\pi}{2}</math> leads to <math>K_{11} = K_{22}</math> and <math>K_{12} = -K_{21}</math>.  Energy restrictions usually require <math>K_{12}, K_{21} \ge 0</math> and hence we must have <math>K_{12} = K_{21} = 0</math>.  Therefore the material properties of a transversely isotropic material are described by the matrix
:<math>
  \underline{\underline{\boldsymbol{K}}} =  \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{11} & 0 \\
      0 & 0 & K_{33} \end{bmatrix}
</math>
 
== Transverse isotropy in linear elasticity ==
[[File:Transverse Isotropy.svg|right|thumb|350px|A transversely isotropic elastic material.]]
 
=== Condition for material symmetry ===
In [[linear elasticity]], the [[stress (physics)|stress]] and [[infinitesimal strain theory|strain]] are related by [[Hooke's law]], i.e.,
:<math>
  \underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\mathsf{C}}}~\underline{\underline{\boldsymbol{\varepsilon}}}
</math>
or, using [[Voigt notation]],
:<math>
  \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} =
  \begin{bmatrix}
  C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\
C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix}
  \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}
</math>
The condition for material symmetry in linear elastic materials is.<ref name=Slawinski>{{cite book |last=Slawinski|first=M. A.|title=Waves and Rays in Elastic Continua|year=2010|publisher=World Scientific|url=http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf}}</ref>
:<math>
  \underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}}
</math>
where
:<math>
  \underline{\underline{\mathsf{A}_\varepsilon}} = \begin{bmatrix}
    A_{11}^2 & A_{12}^2 & A_{13}^2 & A_{12}A_{13} & A_{11}A_{13} & A_{11}A_{12} \\
    A_{21}^2 & A_{22}^2 & A_{23}^2 & A_{22}A_{23} & A_{21}A_{23} & A_{21}A_{22} \\
    A_{31}^2 & A_{32}^2 & A_{33}^2 & A_{32}A_{33} & A_{31}A_{33} & A_{31}A_{32} \\
    2A_{21}A_{31} & 2A_{22}A_{32} & 2A_{23}A_{33} & A_{22}A_{33}+A_{23}A_{32} & A_{21}A_{33}+A_{23}A_{31} & A_{21}A_{32}+A_{22}A_{31} \\
    2A_{11}A_{31} & 2A_{12}A_{32} & 2A_{13}A_{33} & A_{12}A_{33}+A_{13}A_{32} & A_{11}A_{33}+A_{13}A_{31} & A_{11}A_{32}+A_{12}A_{31} \\
    2A_{11}A_{21} & 2A_{12}A_{22} & 2A_{13}A_{23} & A_{12}A_{23}+A_{13}A_{22} & A_{11}A_{23}+A_{13}A_{21} & A_{11}A_{22}+A_{12}A_{21} \end{bmatrix}
</math>
 
===Elasticity tensor===
Using the specific values of <math>\theta</math> in matrix <math>\underline{\underline{\boldsymbol{A}}}</math>,<ref name=note1>We can use the  values <math>\theta=\pi</math> and <math>\theta=\tfrac{\pi}{2}</math> for a derivation of the stiffness matrix for transversely isotropic materials.  Specific values are chosen to make the calculation easier.</ref>  it can be shown that the fourth-rank elasticity stiffness tensor may be written in 2-index [[Linear elasticity#Anisotropic homogeneous media|Voigt notation]] as the matrix
:<math> \underline{\underline{\mathsf{C}}} =
\begin{bmatrix}
C_{11}&C_{12}&C_{13}&0&0&0\\
C_{12}&C_{11}&C_{13}&0&0&0\\
C_{13}&C_{13}&C_{33}&0&0&0\\
0&0&0&C_{44}&0&0\\
0&0&0&0&C_{44}&0\\
0&0&0&0&0&(C_{11}-C_{12})/2
\end{bmatrix} =\begin{bmatrix}
  C_{11}  &  C_{11}-2C_{66} &  C_{13} & 0 & 0  & 0 \\
C_{11}-2C_{66}  &  C_{11} &  C_{13} & 0 & 0  & 0 \\
  C_{13}  & C_{13}  &  C_{33} & 0 & 0  & 0 \\
0  & 0 & 0 & C_{44} & 0  & 0 \\
0  & 0 & 0 & 0 & C_{44}  & 0 \\
0  & 0 & 0 & 0 & 0  & C_{66}
\end{bmatrix}.
</math>
 
The elasticity stiffness matrix <math>C_{ij}</math> has 5 independent constants, which are related to well known engineering [[elastic modulus|elastic moduli]] in the following way. These engineering moduli are experimentally determined.
 
The compliance matrix (inverse of the elastic stiffness matrix) is
:<math>
  \underline{\underline{\mathsf{C}}}^{-1} = \frac{1}{\Delta}
  \begin{bmatrix}
    C_{11} C_{33} - C_{13}^2 & C_{13}^2 - C_{12} C_{33} & (C_{12} - C_{11}) C_{13} &  0 &  0 & 0 \\
    C_{13}^2 - C_{12} C_{33} & C_{11} C_{33} - C_{13}^2 &  (C_{12} - C_{11}) C_{13} & 0 & 0 & 0 \\
    (C_{12} - C_{11}) C_{13} & (C_{12} - C_{11}) C_{13} & C_{11}^2 - C_{12}^2 & 0 & 0 & 0 \\
    0 & 0 & 0 & \frac{\Delta}{C_{44}} & 0 & 0 \\
    0& 0 & 0 & 0 & \frac{\Delta}{C_{44}} & 0 \\
    0 & 0 & 0 & 0 & 0 & \frac{2 \Delta}{(C_{11}-C_{12})}
  \end{bmatrix}
</math>
where <math>\Delta := (C_{11} - C_{12}) [(C_{11} + C_{12}) C_{33} -2 C_{13}C_{13}]</math>.  In engineering notation,
:<math>
  \underline{\underline{\mathsf{C}}}^{-1} = \begin{bmatrix}
    \tfrac{1}{E_{\rm x}} & - \tfrac{\nu_{\rm yx}}{E_{\rm x}} & - \tfrac{\nu_{\rm zx}}{E_{\rm z}} & 0 & 0 & 0 \\
    -\tfrac{\nu_{\rm xy}}{E_{\rm x}} & \tfrac{1}{E_{\rm x}} & - \tfrac{\nu_{\rm zx}}{E_{\rm z}} & 0 & 0 & 0 \\
    -\tfrac{\nu_{\rm xz}}{E_{\rm x}} & - \tfrac{\nu_{\rm xz}}{E_{\rm x}} & \tfrac{1}{E_{\rm z}} & 0 & 0 & 0 \\
    0 & 0 & 0 & \tfrac{1}{G_{\rm yz}} & 0 & 0 \\
    0 & 0 & 0 & 0 & \tfrac{1}{G_{\rm yz}} & 0 \\
    0 & 0 & 0 & 0 & 0 &  \tfrac{2(1+\nu_{\rm xy})}{E_{\rm x}}
    \end{bmatrix}
</math>
Comparing these two forms of the compliance matrix shows us that the longitudinal [[Young's modulus]] is given by
:<math>E_L = E_{\rm z} = C_{33}-2C_{13}C_{13}/(C_{11}+C_{12})</math>
Similarly, the transverse [[Young's modulus]] is
:<math>E_T= E_{\rm x} = E_{\rm y} = (C_{11}-C_{12})(C_{11}C_{33}+C_{12}C_{33}-2C_{13}C_{13})/(C_{11}C_{33}-C_{13}C_{13})</math>
The inplane [[shear modulus]] is
:<math>G_{xy}=(C_{11}-C_{12})/2=C_{66}</math>
and the [[Poisson's ratio]] for loading along the polar axis is
:<math>\nu_{LT}=\nu_{xz} = C_{13}/(C_{11}+C_{12})</math>.
 
Here, L represents the longitudinal (polar) direction and T represents the transverse direction.
 
== Transverse isotropy in geophysics ==
In geophysics, a common assumption is that the rock formations of the crust are locally [[linear elasticity#Anisotropic homogeneous media|polar anisotropic]] (transversely isotropic); this is the simplest case of geophysical interest.  Backus upscaling<ref name =Backus/> is often used to determine the effective transversely isotropic elastic constants of layered media for long wavelength seismic waves.
 
Assumptions that are made in the Backus approximation are:
* All materials are linearly elastic
* No sources of intrinsic energy dissipation (e.g. friction)
* Valid in the infinite wavelength limit, hence good results only if layer thickness is much smaller than wavelength
* The statistics of distribution of layer elastic properties are stationary, i.e., there is no correlated trend in these properties.
 
For shorter wavelengths, the behavior of seismic waves is described using the superposition of [[plane wave]]s.  Transversely isotropic media support three types of elastic plane waves:
* a quasi-[[P wave]] ([[Polarization (waves)|polarization]] direction almost equal to propagation direction)
* a quasi-[[S wave]]
* a S-wave (polarized orthogonal to the quasi-S wave, to the symmetry axis, and to the direction of propagation).
Solutions to wave propagation problems in such media may be constructed from these plane waves, using [[Fourier analysis|Fourier synthesis]].
 
=== Backus upscaling (Long wavelength approximation) ===
A layered model of homogeneous and isotropic material, can be up-scaled to a transverse isotropic medium, proposed by Backus.<ref name =Backus>Backus, G. E. (1962), Long-Wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., 67(11), 4427–4440</ref>
 
Backus presented an equivalent medium theory, a heterogeneous medium can be replaced by a homogeneous one which will predict the wave propagation in the actual medium.<ref>Ikelle, Luc T. and Amundsen, Lasse (2005),Introduction to petroleum seismology, SEG Investigations in Geophysics No. 12</ref> Backus showed that layering on a scale much finer than the wavelength has an impact and that a number of isotropic layers can be replaced by a homogeneous transversely isotropic medium that behaves exactly in the same manner as the actual medium under static load in the infinite wavelength limit.
 
If each layer <math>i</math>  is described by 5 transversely isotropic parameters <math>(a_i, b_i, c_i, d_i, e_i)</math>, specifying the matrix
:<math> \underline{\underline{\mathsf{C}_i}}  =\begin{bmatrix}
a_i & a_i - 2e_i & b_i & 0 & 0 & 0 \\
a_i-2e_i  &  a_i &  b_i & 0 & 0 & 0 \\
      b_i &  b_i  &  c_i &  0 &  0 & 0 \\
      0  &  0  &  0 & d_i & 0 & 0\\
      0  &  0  &  0 & 0 & d_i & 0\\
      0  &  0  &  0 & 0 & 0 & e_i\\
\end{bmatrix}
</math>
The elastic moduli for the effective medium will be
:<math>
\underline{\underline{\mathsf{C}_{\mathrm{eff}}}}  =
\begin{bmatrix}
      A    & A-2E &  B & 0 & 0 & 0 \\
    A-2E  &  A  &  B & 0 & 0 & 0 \\
      B    &  B  &  C & 0 & 0 & 0 \\
      0    &  0  &  0 & D & 0 & 0 \\
      0    &  0  &  0 & 0 & D & 0  \\
      0    &  0  &  0 & 0 & 0 & E
\end{bmatrix}
</math>
where
:<math>
\begin{align}
A &= \langle a-b^2c^{-1}\rangle + \langle c^{-1}\rangle^{-1} \langle bc^{-1}\rangle^2  \\
B &= \langle c^{-1}\rangle^{-1} \langle bc^{-1}\rangle \\
C &= \langle c^{-1}\rangle^{-1} \\
D &= \langle d^{-1}\rangle^{-1} \\
E &= \langle e\rangle \\
\end{align}
</math>
 
<math>\langle \cdot\rangle</math> denotes the volume weighted average over all layers.
 
This includes isotropic layers, as the layer is isotropic if <math>b_i = a_i - 2e_i</math>, <math>a_i = c_i</math> and <math>d_i = e_i</math>.
 
=== Short and medium wavelength approximation ===
Solutions to wave propagation problems in linear elastic transversely isotropic media can be constructed by superposing solutions for the quasi-P wave, the quasi S-wave, and a S-wave polarized orthogonal to the quasi S-wave.
However, the equations for the angular variation of velocity are algebraically complex and the plane-wave velocities are functions of the propagation angle <math>\theta</math> are.<ref>{{cite book|last=Nye|first= J. F.|year=2000|title=Physical Properties of Crystals: Their Representation by Tensors and Matrices | publisher= Oxford University Press }}</ref>  The direction dependent [[Signal velocity|wave speeds]] for [[elastic wave]]s through the material can be found by using the [[Linear elasticity|Christoffel equation]] and are given by<ref>G. Mavko, T. Mukerji, J. Dvorkin. ''The Rock Physics Handbook''. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4</ref>
:<math>
  \begin{align}
    V_{qP}(\theta)    &= \sqrt{\frac{C_{11} \sin^2(\theta) + C_{33}
                      \cos^2(\theta)+C_{44}+\sqrt{M(\theta)}}{2\rho}} \\
    V_{qS}(\theta) &= \sqrt{\frac{C_{11} \sin^2(\theta) + C_{33}
                      \cos^2(\theta)+C_{44}-\sqrt{M(\theta)}}{2\rho}} \\
    V_{S}        &= \sqrt{\frac{C_{66} \sin^2(\theta) +
                      C_{44}\cos^2(\theta)}{\rho}} \\
    M(\theta)      &= \left[\left(C_{11}-C_{44}\right) \sin^2(\theta) -  \left(C_{33}-C_{44}\right)\cos^2(\theta)\right]^2
                    + \left(C_{13} + C_{44}\right)^2 \sin^2(2\theta) \\
  \end{align}
</math>
where <math>\begin{align}\theta\end{align}</math> is the angle between the axis of symmetry and the wave propagation direction, <math>\rho</math> is mass density and the <math>C_{ij}</math> are elements of the [[linear elasticity#Anisotropic homogeneous media|elastic stiffness matrix]].  The Thomsen parameters are used to simplify these expressions and make them easier to understand.
 
==== Thomsen parameters ====
Thomsen parameters<ref name="T86">{{cite journal |last=Thomsen|first= Leon|year=1986|title=Weak Elastic Anisotropy |journal=Geophysics |volume=51|issue= 10|pages=1954–1966 |doi=10.1190/1.1442051 |bibcode = 1986Geop...51.1954T }}</ref> are dimensionless combinations of [[elastic moduli]] which characterize transversely isotropic materials, that are encountered, for example, in [[geophysics]].  In terms of the components of the elastic [[Hooke's law#Matrix representation (stiffness tensor)|stiffness matrix]], these parameters are defined as:
:<math>
  \begin{align}
    \epsilon & = \frac{C_{11} - C_{33}}{ 2C_{33} } \\
    \delta & = \frac{(C_{13} + C_{44})^2-(C_{33} - C_{44})^2}{ 2C_{33}(C_{33} - C_{44}) } \\
    \gamma & = \frac{C_{66} - C_{44}}{ 2C_{44} }
  \end{align}
</math>
where index 3 indicates the axis of symmetry (<math>\mathbf{e}_3</math>) .  These parameters, in conjunction with the associated [[P wave]] and [[S wave]] velocities, can be used to characterize wave propagation through weakly anisotropic, layered media.  It is found empirically that, for most layered [[rock formation]]s the Thomsen parameters are usually much less than 1.
 
The name refers to Leon Thomsen, professor of geophysics at the [[University of Houston]], who proposed these parameters in his 1986 paper "Weak Elastic Anisotropy".
 
==== Simplified expressions for wave velocities ====
In geophysics the anisotropy in elastic properties is usually weak, in which case <Math>\delta, \gamma, \epsilon \ll 1</math>.  When the exact expressions for the wave velocities above are linearized in these small quantities, they simplify to
 
:<math>
  \begin{align}
    V_{qP}(\theta) & \approx V_{P0}(1 + \delta \sin^2 \theta \cos^2 \theta + \epsilon \sin^4 \theta) \\
    V_{qS}(\theta) & \approx V_{S0}\left[1 + \left(\frac{V_{P0}}{ V_{S0}}\right)^2(\epsilon-\delta) \sin^2 \theta \cos^2 \theta\right] \\
    V_{S}(\theta)  & \approx V_{S0}(1 + \gamma \sin^2 \theta )
  \end{align}
</math>
where
:<math>
  V_{P0}= \sqrt{C_{33}/\rho} ~;~~ V_{S0}= \sqrt{C_{44}/\rho}
</math>
are the P and S wave velocities in the direction of the axis of symmetry (<math>\mathbf{e}_3</math>) (in geophysics, this is usually, but not always, the vertical direction). Note that <math>\delta</math> may be further linearized, but this does not lead to further simplification. 
 
The approximate expressions for the wave velocities are simple enough to be physically interpreted, and sufficiently accurate for most geophysical applications.  These expressions are also useful in some contexts where the anisotropy is not weak.
 
 
== See also ==
* [[Orthotropic material]]
* [[Linear elasticity]]
* [[Hooke's law]]
 
==References==
<references/>
 
{{DEFAULTSORT:Transverse Isotropy}}
[[Category:Crystallography]]
[[Category:Orientation]]
[[Category:Elasticity (physics)]]

Latest revision as of 16:50, 21 December 2014

Ship's Officer Vance Gohr from Creston, really loves snowmobile riding, diet and maintain a journal. Discovers the beauty in visiting spots around the globe, recently just returning from Osun-Osogbo Sacred Grove.

Also visit my weblog :: simple diet burn fat