Microstate (statistical mechanics): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Luckas-bot
 
en>Nafis ru
Line 1: Line 1:
The writer's title is Christy Brookins. He is an info officer. I am really fond of to go to karaoke but I've been using on new things recently. For years she's been residing in Kentucky but her husband wants them to move.<br><br>Also visit my site; authentic psychic readings ([http://brazil.amor-amore.com/irboothe brazil.amor-amore.com])
{{seealso|Intersection theory}}
{{more footnotes|date=September 2012}}
In [[mathematics]], '''enumerative geometry''' is the branch of [[algebraic geometry]] concerned with counting numbers of solutions to geometric questions, mainly by means of [[intersection theory]].
 
==History==
[[File:Apollonius8ColorMultiplyV2.svg|thumb|right|[[Problem of Apollonius|Circles of Apollonius]]]]
The [[problem of Apollonius]] is one of the earliest examples of enumerative geometry.  This problem asks for the number and construction of circles that are tangent to three given circles, points or lines.  In general, the problem for three given circles has eight solutions, which can be seen as 2<sup>3</sup>, each tangency condition imposing a quadratic condition on the space of circles.  However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem.
 
==Key tools==
A number of tools, ranging from the elementary to the more advanced, include:
* [[Dimension counting]]
* [[Bézout's theorem]]
* [[Schubert calculus]], and more generally [[characteristic class]]es in [[cohomology]]
* The connection of counting intersections with cohomology is [[Poincaré duality]]
* The study of [[moduli spaces]] of curves, maps and other geometric objects, sometimes via the theory of [[quantum cohomology]]. The study of [[Quantum cohomology]], [[Gromov-Witten invariant]]s and [[mirror symmetry (string theory)|mirror symmetry]] gave a significant progress in Clemens conjecture.
 
Enumerative geometry is very closely tied to [[intersection theory]].
 
==Schubert calculus==
Enumerative geometry saw spectacular development towards the end of the nineteenth century, at the hands of [[Hermann Schubert]].<ref>{{Cite book|first=H. |last=Schubert|title=Kalkul der abzählenden Geometrie| origyear =1879|year =1979}}</ref> He introduced for the purpose the [[Schubert calculus]], which has proved of fundamental geometrical and [[topological]] value in broader areas. The specific needs of enumerative geometry were not addressed until some further attention was paid to them in the 1960s and 1970s (as pointed out for example by [[Steven Kleiman]]). [[Intersection number]]s had been rigorously defined (by [[André Weil]] as part of his foundational programme 1942&ndash;6, and again subsequently). This did not exhaust the proper domain of enumerative questions.
 
==Fudge factors and Hilbert's fifteenth problem==
Naïve application of dimension counting and Bézout’s theorem yields incorrect results, as the following example shows. In response to these problems, algebraic geometers introduced vague "fudge factors", which were only rigorously justified decades later.
 
As an example, count the [[conic section]]s tangent to five given lines in the [[projective plane]].<ref>{{cite book|first=William|last= Fulton| title=Intersection Theory|year=1984|chapter= 10.4|isbn=0-387-12176-5}}</ref> The conics constitute a [[projective space]] of dimension 5, taking their six coefficients as [[homogeneous coordinates]], and [[five points determine a conic]], if the points are in [[general linear position]], as passing through a given point imposes a linear condition. Similarly, tangency to a given line ''L'' (tangency is intersection with multiplicity two) is one quadratic condition, so determined a [[quadric]] in ''P''<sup>5</sup>. However the [[linear system of divisors]] consisting of all such quadrics is not without a [[base locus]]. In fact each such quadric contains the [[Veronese surface]], which parametrizes the conics
 
:(''aX'' + ''bY'' + ''cZ'')<sup>2</sup> = 0
 
called 'double lines'. This is because a double line intersects every line in the plane, since lines in the projective plane intersect, with multiplicity two because it is doubled, and thus satisfies the same intersection condition (intersection of multiplicity two) as a nondegenerate conic that is ''tangent'' to the line.
 
The general [[Bézout theorem]] says 5 general quadrics in 5-space will intersect in 32 = 2<sup>5</sup> points. But the relevant quadrics here are not in [[general position]]. From 32, 31 must be subtracted and attributed to the Veronese, to leave the correct answer (from the point of view of geometry), namely 1. This process of attributing intersections to 'degenerate' cases is a typical geometric introduction of a '[[Wiktionary:fudge factor|fudge factor]]'.  
 
It was a [[Hilbert problem]] (the [[Hilbert's fifteenth problem|fifteenth]], in a more stringent reading) to overcome the apparently arbitrary nature of these interventions; this aspect goes beyond the foundational question of the Schubert calculus itself.
 
==Clemens conjecture==
 
In 1984 H. Clemens studied the counting of the number of [[rational curve]]s on a [[quintic threefold]] <math>X\subset P^4</math> and reached the following conjecture.
: Let <math>X \subset P^4</math> be a general quintic threefold, d a positive integer, then there are only a finite number of rational curves with degree d on <math>X</math>.
 
This conjecture has been resolved in the case <math>d \le 9</math>, but is still open for higher <math>d</math>.
 
A 1991 paper  about mirror symmetry on the quintic threefold in <math>P^4</math> from the string theoretical viewpoint gives numbers of degree d rational curves on <math>X</math> for all <math>d > 0</math>. Prior to this, algebraic geometers could calculate these numbers only for <math>d \le 5</math>.
 
==References==
{{reflist}}
 
[[Category:Intersection theory]]
[[Category:Algebraic geometry]]

Revision as of 22:55, 9 January 2014

Fitter (General ) Cameron Broadbent from Stevensville, spends time with hobbies including metal detection, property developers in singapore and psychology. Finds encouragement by making vacation to Tomb of Askia.

Have a look at my page; condo for Sale Template:More footnotes In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory.

History

Circles of Apollonius

The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem.

Key tools

A number of tools, ranging from the elementary to the more advanced, include:

Enumerative geometry is very closely tied to intersection theory.

Schubert calculus

Enumerative geometry saw spectacular development towards the end of the nineteenth century, at the hands of Hermann Schubert.[1] He introduced for the purpose the Schubert calculus, which has proved of fundamental geometrical and topological value in broader areas. The specific needs of enumerative geometry were not addressed until some further attention was paid to them in the 1960s and 1970s (as pointed out for example by Steven Kleiman). Intersection numbers had been rigorously defined (by André Weil as part of his foundational programme 1942–6, and again subsequently). This did not exhaust the proper domain of enumerative questions.

Fudge factors and Hilbert's fifteenth problem

Naïve application of dimension counting and Bézout’s theorem yields incorrect results, as the following example shows. In response to these problems, algebraic geometers introduced vague "fudge factors", which were only rigorously justified decades later.

As an example, count the conic sections tangent to five given lines in the projective plane.[2] The conics constitute a projective space of dimension 5, taking their six coefficients as homogeneous coordinates, and five points determine a conic, if the points are in general linear position, as passing through a given point imposes a linear condition. Similarly, tangency to a given line L (tangency is intersection with multiplicity two) is one quadratic condition, so determined a quadric in P5. However the linear system of divisors consisting of all such quadrics is not without a base locus. In fact each such quadric contains the Veronese surface, which parametrizes the conics

(aX + bY + cZ)2 = 0

called 'double lines'. This is because a double line intersects every line in the plane, since lines in the projective plane intersect, with multiplicity two because it is doubled, and thus satisfies the same intersection condition (intersection of multiplicity two) as a nondegenerate conic that is tangent to the line.

The general Bézout theorem says 5 general quadrics in 5-space will intersect in 32 = 25 points. But the relevant quadrics here are not in general position. From 32, 31 must be subtracted and attributed to the Veronese, to leave the correct answer (from the point of view of geometry), namely 1. This process of attributing intersections to 'degenerate' cases is a typical geometric introduction of a 'fudge factor'.

It was a Hilbert problem (the fifteenth, in a more stringent reading) to overcome the apparently arbitrary nature of these interventions; this aspect goes beyond the foundational question of the Schubert calculus itself.

Clemens conjecture

In 1984 H. Clemens studied the counting of the number of rational curves on a quintic threefold and reached the following conjecture.

Let be a general quintic threefold, d a positive integer, then there are only a finite number of rational curves with degree d on .

This conjecture has been resolved in the case , but is still open for higher .

A 1991 paper about mirror symmetry on the quintic threefold in from the string theoretical viewpoint gives numbers of degree d rational curves on for all . Prior to this, algebraic geometers could calculate these numbers only for .

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534