# Shelling (topology)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a shelling of a simplicial complex is a way of gluing it together from its maximal simplices in a well-behaved way. A complex admitting a shelling is called shellable.

## Definition

A d-dimensional simplicial complex is called pure if its maximal simplices all have dimension d. Let ${\displaystyle \Delta }$ be a finite or countably infinite simplicial complex. An ordering ${\displaystyle C_{1},C_{2},\ldots }$ of the maximal simplices of ${\displaystyle \Delta }$ is a shelling if the complex ${\displaystyle B_{k}:=\left(\bigcup _{i=1}^{k-1}C_{i}\right)\cap C_{k}}$ is pure and ${\displaystyle (\dim C_{k}-1)}$-dimensional for all ${\displaystyle k=2,3,\ldots }$. If ${\displaystyle B_{k}}$ is the entire boundary of ${\displaystyle C_{k}}$ then ${\displaystyle C_{k}}$ is called spanning.

For ${\displaystyle \Delta }$ not necessarily countable, one can define a shelling as a well-ordering of the maximal simplices of ${\displaystyle \Delta }$ having analogous properties.

## Properties

• A shellable complex is homotopy equivalent to a wedge sum of spheres, one for each spanning simplex and of corresponding dimension.
• A shellable complex may admit many different shellings, but the number of spanning simplices, and their dimensions, do not depend on the choice of shelling. This follows from the previous property.

## References

• {{#invoke:citation/CS1|citation

|CitationClass=book }}

1. {{#invoke:Citation/CS1|citation |CitationClass=journal }}