Jump to navigation Jump to search

General

Display information for equation id:math.224344.5 on revision:224344

* Page found: Gauss–Bonnet theorem (eq math.224344.5)

(force rerendering)

Occurrences on the following pages:

Hash: e89a2ceedc8d45f4439e85b04dea1d2e

TeX (original user input):

\partial M

TeX (checked):

\partial M

LaTeXML (experimental; uses MathML) rendering

MathML (812 B / 329 B) :

M 𝑀 {\displaystyle\partial M}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\partial M}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">
      <mo id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml"></mo>
      <mo id="p1.1.m1.1.3a" xref="p1.1.m1.1.3.cmml"></mo>
      <mi id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">M</mi>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">
        <partialdiff id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1"/>
        <ci id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2">𝑀</ci>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\partial M}</annotation>
  </semantics>
</math>

SVG (2.332 KB / 1.205 KB) :

partial-differential upper M

SVG (MathML can be enabled via browser plugin) rendering

MathML (416 B / 268 B) :

M {\displaystyle \partial M}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle \partial M}">
  <semantics>
    <mrow class="MJX-TeXAtom-ORD">
      <mstyle displaystyle="true" scriptlevel="0">
        <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
        <mi>M</mi>
      </mstyle>
    </mrow>
    <annotation encoding="application/x-tex">{\displaystyle \partial M}</annotation>
  </semantics>
</math>

SVG (2.092 KB / 1.142 KB) :

{\displaystyle \partial M}

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Gauss–Bonnet theorem page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results