Jump to navigation Jump to search

General

Display information for equation id:math.237717.3 on revision:237717

* Page found: Engel's theorem (eq math.237717.3)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: 16e35d16063cd69632515f00ed9fe3f1

TeX (original user input):

 \mathbf{L}^0 =  \mathbf{L}, \quad \mathbf{L}^{i+1} = [\mathbf{L}, \mathbf{L}^i]\

TeX (checked):

\mathbf {L} ^{0}=\mathbf {L} ,\quad \mathbf {L} ^{i+1}=[\mathbf {L} ,\mathbf {L} ^{i}]\

LaTeXML (experimental; uses MathML) rendering

MathML (4.206 KB / 884 B) :

𝐋 0 = 𝐋 , 𝐋 i + 1 = [ 𝐋 , 𝐋 i ] formulae-sequence superscript 𝐋 0 𝐋 superscript 𝐋 𝑖 1 𝐋 superscript 𝐋 𝑖 {\displaystyle{\mathbf{L}}^{0}={\mathbf{L}},\quad{\mathbf{L}}^{{i+1}}=[{% \mathbf{L}},{\mathbf{L}}^{i}]\ }
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\mathbf{L}}^{0}={\mathbf{L}},\quad{\mathbf{L}}^{{i+1}}=[{%&#10;\mathbf{L}},{\mathbf{L}}^{i}]\ }" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.17" xref="p1.1.m1.1.17.1.cmml">
      <mrow id="p1.1.m1.1.17.2" xref="p1.1.m1.1.17.2.cmml">
        <msup id="p1.1.m1.1.17.2.1" xref="p1.1.m1.1.17.2.1.cmml">
          <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">𝐋</mi>
          <mn id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">0</mn>
        </msup>
        <mo id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">=</mo>
        <mi id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">𝐋</mi>
      </mrow>
      <mo rspace="12.5pt" id="p1.1.m1.1.5" xref="p1.1.m1.1.17.1a.cmml">,</mo>
      <mrow id="p1.1.m1.1.17.3" xref="p1.1.m1.1.17.3.cmml">
        <msup id="p1.1.m1.1.17.3.1" xref="p1.1.m1.1.17.3.1.cmml">
          <mi id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">𝐋</mi>
          <mrow id="p1.1.m1.1.8.1" xref="p1.1.m1.1.8.1.cmml">
            <mi id="p1.1.m1.1.8.1.1" xref="p1.1.m1.1.8.1.1.cmml">i</mi>
            <mo id="p1.1.m1.1.8.1.2" xref="p1.1.m1.1.8.1.2.cmml">+</mo>
            <mn id="p1.1.m1.1.8.1.3" xref="p1.1.m1.1.8.1.3.cmml">1</mn>
          </mrow>
        </msup>
        <mo id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">=</mo>
        <mrow id="p1.1.m1.1.17.3.2" xref="p1.1.m1.1.17.3.2.1.cmml">
          <mo stretchy="false" id="p1.1.m1.1.10" xref="p1.1.m1.1.17.3.2.1.cmml">[</mo>
          <mi id="p1.1.m1.1.11" xref="p1.1.m1.1.11.cmml">𝐋</mi>
          <mo id="p1.1.m1.1.12" xref="p1.1.m1.1.17.3.2.1.cmml">,</mo>
          <msup id="p1.1.m1.1.17.3.2.2" xref="p1.1.m1.1.17.3.2.2.cmml">
            <mi id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">𝐋</mi>
            <mi id="p1.1.m1.1.14.1" xref="p1.1.m1.1.14.1.cmml">i</mi>
          </msup>
          <mo rspace="7.5pt" stretchy="false" id="p1.1.m1.1.15" xref="p1.1.m1.1.17.3.2.1.cmml">]</mo>
        </mrow>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.17.1.cmml" xref="p1.1.m1.1.17">
        <csymbol cd="ambiguous" id="p1.1.m1.1.17.1a.cmml" xref="p1.1.m1.1.5">formulae-sequence</csymbol>
        <apply id="p1.1.m1.1.17.2.cmml" xref="p1.1.m1.1.17.2">
          <eq id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3"/>
          <apply id="p1.1.m1.1.17.2.1.cmml" xref="p1.1.m1.1.17.2.1">
            <csymbol cd="ambiguous" id="p1.1.m1.1.17.2.1.1.cmml" xref="p1.1.m1.1.17.2.1">superscript</csymbol>
            <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝐋</ci>
            <cn type="integer" id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">0</cn>
          </apply>
          <ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">𝐋</ci>
        </apply>
        <apply id="p1.1.m1.1.17.3.cmml" xref="p1.1.m1.1.17.3">
          <eq id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9"/>
          <apply id="p1.1.m1.1.17.3.1.cmml" xref="p1.1.m1.1.17.3.1">
            <csymbol cd="ambiguous" id="p1.1.m1.1.17.3.1.1.cmml" xref="p1.1.m1.1.17.3.1">superscript</csymbol>
            <ci id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">𝐋</ci>
            <apply id="p1.1.m1.1.8.1.cmml" xref="p1.1.m1.1.8.1">
              <plus id="p1.1.m1.1.8.1.2.cmml" xref="p1.1.m1.1.8.1.2"/>
              <ci id="p1.1.m1.1.8.1.1.cmml" xref="p1.1.m1.1.8.1.1">𝑖</ci>
              <cn type="integer" id="p1.1.m1.1.8.1.3.cmml" xref="p1.1.m1.1.8.1.3">1</cn>
            </apply>
          </apply>
          <interval closure="closed" id="p1.1.m1.1.17.3.2.1.cmml" xref="p1.1.m1.1.17.3.2">
            <ci id="p1.1.m1.1.11.cmml" xref="p1.1.m1.1.11">𝐋</ci>
            <apply id="p1.1.m1.1.17.3.2.2.cmml" xref="p1.1.m1.1.17.3.2.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.17.3.2.2.1.cmml" xref="p1.1.m1.1.17.3.2.2">superscript</csymbol>
              <ci id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13">𝐋</ci>
              <ci id="p1.1.m1.1.14.1.cmml" xref="p1.1.m1.1.14.1">𝑖</ci>
            </apply>
          </interval>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\mathbf{L}}^{0}={\mathbf{L}},\quad{\mathbf{L}}^{{i+1}}=[{%
\mathbf{L}},{\mathbf{L}}^{i}]\ }</annotation>
  </semantics>
</math>

SVG (5.44 KB / 1.779 KB) :

bold upper L Superscript 0 Baseline equals bold upper L comma bold upper L Superscript i plus 1 Baseline equals left-bracket bold upper L comma bold upper L Superscript i Baseline right-bracket

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: (L)^(0)= L , (L)^(i + 1)=[L , (L)^(i)]

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Translation to Mathematica

In Mathematica: (L)^(0)= L , (L)^(i + 1)=[L , (L)^(i)]

Information about the conversion process:

I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Similar pages

Calculated based on the variables occurring on the entire Engel's theorem page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results