General
Display information for equation id:math.3884.20 on revision:3884
* Page found: Quotient algebra (eq math.3884.20)
(force rerendering)Cannot find the equation data in the database. Fetching from revision text.
Occurrences on the following pages:
Hash: 584a81dbf5bf6aa737ba43567ad6307b
TeX (original user input):
n_i
TeX (checked):
n_{i}
LaTeXML (experimental; uses MathML) rendering
MathML (843 B / 336 B) :

<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle n_{i}}" display="inline">
<semantics id="p1.1.m1.1a">
<msub id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">
<mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">n</mi>
<mi id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">i</mi>
</msub>
<annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
<apply id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">
<csymbol cd="ambiguous" id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3">subscript</csymbol>
<ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝑛</ci>
<ci id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">𝑖</ci>
</apply>
</annotation-xml>
<annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle n_{i}}</annotation>
</semantics>
</math>
SVG (1.933 KB / 1009 B) :
MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
PNG (0 B / 8 B) :
Translations to Computer Algebra Systems
Translation to Maple
In Maple: n[i]
Information about the conversion process:
I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].
We keep it like it is! But you should know that Maple uses I for this constant.
If you want to translate it as a constant, use the corresponding DLMF macro \iunit
i: the imaginary unit == the principal square root of -1 was translated to: i
Translation to Mathematica
In Mathematica: Subscript[n, i]
Information about the conversion process:
I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].
We keep it like it is! But you should know that Mathematica uses I for this constant.
If you want to translate it as a constant, use the corresponding DLMF macro \iunit
i: the imaginary unit == the principal square root of -1 was translated to: i
Similar pages
Calculated based on the variables occurring on the entire Quotient algebra page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results