Test (assessment): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
en>Correogsk
A section about other types of exams and other terms was added.
Line 1: Line 1:
Four or five years ago, a reader of some of my columns bought the domain name jamesaltucher.com and gave it to me as a birthday gift. It was a total surprise to me. I didn't even know the reader. I hope one day we meet.<br>Two years ago a friend of mine, Tim Sykes, insisted I had to have a blog. He set it up for me. He even wrote the "About Me". I didn't want a blog. I had nothing to say. But about 6 or 7 months ago I decided I wanted to take this blog seriously. I kept putting off changing the "About Me" which was no longer really about me and maybe never was.<br>A few weeks ago I did a chapter in one of the books in Seth Godin's "The Domino Project". The book is out and called "No Idling". Mohit Pewar organized it (here's Mohit's blog) and sent me a bunch of questions recently. It's intended to be an interview on his blog but I hope Mohit forgives me because I want to use it as my new "About Me" also.<br>1. You are a trader, investor, writer, and entrepreneur? Which of these roles you enjoy the most and why?<br>When I first moved to New York City in 1994 I wanted to be everything to everyone. I had spent the six years prior to that writing a bunch of unpublished novels and unpublished short stories. I must've sent out 100s of stories to literary journals. I got form rejections from every publisher, journal, and agent I sent my novels and stories to.<br>Now, in 1994, everything was possible. The money was in NYC. Media was here. I lived in my 10�10 room and pulled suits out of a garbage bag every morning but it didn't matter...the internet was revving up and I knew how to build a [http://Www.reddit.com/r/howto/search?q=website website]. One of the few in the city. My sister warned me though: nobody here is your friend. Everybody wants something<br>
[[Image:TDCfullview.jpg|thumb|right|U.S. Navy Mk III Torpedo Data Computer, the standard US Navy torpedo fire control computer during World War II. Later in World War II (1943), the TDC Mk III was replaced by the TDC Mk IV, which was an improved and larger version of the Mk III.]]
And I wanted something. I wanted the fleeting feelings of success, for the first time ever, in order to feel better about myself. I wanted a girl next to me. I wanted to build and sell companies and finally prove to everyone I was the smartest. I wanted to do a TV show. I wanted to write books<br>
But everything involved having a master. Clients. Employers. Investors. Publishers. The market (the deadliest master of all). Employees. I was a slave to everyone for so many years. And the more shackles I had on, the lonelier I got<br>
Much of the time, even when I had those moments of success, I didn't know how to turn it into a better life. I felt ugly and then later, I felt stupid when I would let the success dribble away down the sink<br>
I love writing because every now and then that ugliness turns into honesty. When I write, I'm only a slave to myself. When I do all of those other things you ask about, I'm a slave to everyone else<br>
Some links<br>
33 Unusual Tips to Being a Better Write<br>
"The Tooth<br>
(one of my favorite posts on my blog<br>
2. What inspires you to get up and start working/writing every day<br>
The other day I had breakfast with a fascinating guy who had just sold a piece of his fund of funds. He told me what "fracking" was and how the US was going to be a major oil player again. We spoke for two hours about a wide range of topics, including what happens when we can finally implant a google chip in our brains<br>
After that I had to go onto NPR because I firmly believe that in one important respect we are degenerating as a country - we are graduating a generation of indentured servants who will spend 50 years or more paying down their student debt rather than starting companies and curing cancer. So maybe I made a difference<br>
Then I had lunch with a guy I hadn't seen in ten years. In those ten years he had gone to jail and now I was finally taking the time to forgive him for something he never did to me. I felt bad I hadn't helped him when he was at his low point. Then I came home and watched my kid play clarinet at her school. Then I read until I fell asleep. Today I did nothing but write. Both days inspired me<br>
It also inspires me that I'm being asked these questions. Whenever anyone asks me to do anything I'm infinitely grateful. Why me? I feel lucky. I like it when someone cares what I think. I'll write and do things as long as anyone cares. I honestly probably wouldn't write if nobody cared. I don't have enough humility for that, I'm ashamed to admit<br>
3. Your new book "How to be the luckiest person alive" has just come out. What is it about<br>
When I was a kid I thought I needed certain things: a college education from a great school, a great home, a lot of money, someone who would love me with ease. I wanted people to think I was smart. I wanted people to think I was even special.  And as I grew older more and more goals got added to the list: a high chess rating,  [http://www.pcs-systems.co.uk/Images/celinebag.aspx http://www.pcs-systems.co.uk/Images/celinebag.aspx] a published book, perfect weather, good friends,  respect in various fields, etc. I lied to myself that I needed these things to be happy. The world was going to work hard to give me these things, I thought. But it turned out the world owed me no favors<br>
And gradually, over time, I lost everything I had ever gained. Several times.  I've paced at night so many times wondering what the hell was I going to do next or trying not to care. The book is about regaining your sanity, regaining your happiness, finding luck in all the little pockets of life that people forget about. It's about turning away from the religion you've been hypnotized into believing into the religion you can find inside yourself every moment of the day<br>
[Note: in a few days I'm going to do a post on self-publishing and also how to get the ebook for free. The link above is to the paperback. Kindle should be ready soon also.<br>
Related link: Why I Write Books Even Though I've Lost Money On Every Book I've Ever Writte<br>
4. Is it possible to accelerate success? If yes, how<br>
Yes, and it's the only way I know actually to achieve success. It's by following the Daily Practice I outline in this post:<br>
It's the only way I know to exercise every muscle from the inside of you to the outside of you. I firmly believe that happiness starts with that practice<br>
5. You say that discipline, persistence and psychology are important if one has to achieve success. How can one work on improving "psychology" part<br>
Success doesn't really mean anything. People want to be happy in a harsh and unforgiving world. It's very difficult. We're so lucky most of us live in countries without major wars. Our kids aren't getting killed by random gunfire. We all have cell phones. We all can communicate with each other on the Internet. We have Google to catalog every piece of information in history!  We are so amazingly lucky already<br>
How can it be I was so lucky to be born into such a body? In New York City of all places? Just by being born in such a way on this planet was an amazing success<br>
So what else is there? The fact is that most of us, including me, have a hard time being happy with such ready-made success. We quickly adapt and want so much more out of life. It's not wars or disease that kill us. It's the minor inconveniences that add up in life. It's the times we feel slighted or betrayed. Or even slightly betrayed. Or overcharged. Or we miss a train. Or it's raining today. Or the dishwasher doesn't work. Or the supermarket doesn't have the food we like. We forget how good the snow tasted when we were kids. Now we want gourmet food at every meal<br>
Taking a step back, doing the Daily Practice I outline in the question above. For me, the results of that bring me happiness. That's success. Today. And hopefully tomorrow<br>
6. You advocate not sending kids to college. What if kids grow up and then blame their parents about not letting them get a college education<br>
I went to one of my kid's music recitals yesterday. She was happy to see me. I hugged her afterwards. She played "the star wars theme" on the clarinet. I wish I could've played that for my parents. My other daughter has a dance recital in a few weeks. I tried to give her tips but she laughed at me. I was quite the breakdancer in my youth. The nerdiest breakdancer on the planet. I want to be present for them. To love them. To let them always know that in their own dark moments, they know I will listen to them. I love them. Even when they cry and don't always agree with me. Even when they laugh at me because sometimes I act like a clown<br>
Later, if they want to blame me for anything at all then I will still love them. That's my "what if"<br>
Two posts<br>
I want my daughters to be lesbian<br>
Advice I want to give my daughter<br><br>


The '''Torpedo Data Computer (TDC)''' was an early [[electromechanical]] [[analog computer]] used for [[torpedo]] [[fire-control system|fire-control]] on [[US Navy|American]] [[submarine]]s during [[World War II]]. [[Royal Navy#1914–1945|Britain]], [[Kriegsmarine|Germany]], and [[Imperial Japanese Navy|Japan]] also developed automated torpedo fire control equipment, but none were as advanced as the [[US Navy]]'s TDC,<ref name=JapanGermany>{{cite book | last = Friedman | first = Norman | title = US Submarines Through 1945: An Illustrated Design History | year = 1995 | publisher = Naval Institute Press | isbn=1-55750-263-3 | pages = 195 }}</ref> as it was able to automatically track the target rather than simply offering an instantaneous firing solution. This unique capability of the TDC set the standard for submarine torpedo [[Fire-control system|fire control]] during World War II.<ref name=computermuseum>{{cite web | title = Analog Computers | work = Lexikon's History of Computing | year = 1995 | url = http://www.computermuseum.li/Testpage/AnalogComputers.htm#Restoration | accessdate = 2006-07-03 }}
</ref><ref name=OtherTrackers>While the TDC's target tracking abilities were unique for submarine torpedo fire control during WWII, target tracking was used on surface ship torpedo fire control systems by a number of nations (see references in this article to [http://www.hnsa.org/doc/destroyer/ddfc/index.htm US destroyer] and [http://www.fischer-tropsch.org/primary_documents/gvt_reports/USNAVY/USNTMJ%20Reports/USNTMJ-200F-0086-0124%20Report%20O-32.pdf Japanese torpedo fire control]). The TDC was the first analog computer to miniaturize the capability enough for deployment on a submarine.</ref>


7. Four of your favorite posts from The Altucher Confidential<br>
Replacing the previously standard hand-held [[slide rule]]-type devices (known as the "banjo" & "is/was"),<ref>Beach, ''Run Silent, Run Deep''</ref> the TDC was designed to provide fire-control solutions for submarine torpedo firing against [[ship]]s running on the surface (surface warships used a different computer).<ref>[http://www.hnsa.org/doc/destroyer/ddfc/index.htm]</ref> It had an array of handcranks, dials, and switches for data input and display.<ref>[http://www.fleetsubmarine.com/tdc.html]</ref> To generate a fire control solution, it required inputs on
As soon as I publish a post I get scared to death. Is it good? Will people re-tweet? Will one part of the audience of this blog like it at the expense of another part of the audience. Will I get Facebook Likes? I have to stop clinging to these things but you also need to respect the audience. I don't know. It's a little bit confusing to me. I don't have the confidence of a real writer yet<br>
*submarine course and speed, which were read automatically from the submarine's [[gyrocompass]] and [[pitometer log]]
Here are four of my favorites<br>
*estimated target course, speed, and range information (obtained using data from the submarine's [[periscope]], [[Target Bearing Transmitter]] (TBT),<ref>[http://www.bowfin.org/website/bowfin/bowfin_systems/TBT/tbt.htm]</ref> [[radar]], and [[sonar]])
How I screwed Yasser Arafat out of $2mm (and lost another $100mm in the process<br>
*torpedo type and speed (type was needed to deal with the different torpedo ballistics)<!--This was accounted for by changing cams in the machine, but can't recall if the source is Blair, Grider, O'Kane, or Beach...or somewhere else...-->
It's Your Fault<br>
 
I'm Guilty of Torturing Wome<br>
The TDC performed the [[trigonometry|trigonometric]] calculations required to compute a target intercept course for the torpedo. It also had an electromechanical interface to the torpedoes, allowing it to automatically set courses while torpedos were still in their tubes, ready to be fired.
The Girl Whose Name Was a Curs<br>
 
Although these three are favorites I really don't post anything unless it's my favorite of that moment<br>
The TDC's target tracking capability was used by the fire control party to continuously update the fire control solution even while the submarine was maneuvering. The TDC's target tracking ability also allowed the submarine to accurately fire torpedoes even when the target was temporarily obscured by smoke or fog.
8. 3 must-read books for aspiring entrepreneurs<br>
 
The key in an entrepreneur book: you want to learn business. You want to learn how to honestly communicate with your customers. You want to stand out<br>
The TDC was a rather bulky addition to the sub's [[conning tower]] and required two extra crewmen: one as an expert in its maintenance, the other as its actual operator. Despite these drawbacks, the use of the TDC was an important factor in the successful [[commerce raiding]] program conducted by American submarines during the [[Pacific war|Pacific]] campaign of World War II. Accounts of the American submarine campaign in the Pacific often cite the use of TDC.<ref name=clear>{{cite book | last = O'Kane | first = Richard | title = Clear The Bridge:The War Patrols of the U.S.S. Tang | publisher = Bantam Books | year = 1977 | location = New York | isbn= 0-553-14516-9}}</ref><ref name=wahoo>{{cite book | last = O'Kane | first = Richard | title = Wahoo: The Patrols of America's Most Famous World War II Submarine | publisher = Bantam Books | year = 1987 | location = New York | isbn= 0-553-28161-5}}; Beach, Edward L., Jr., Captain, USN (rtd). ''Run Silent, Run Deep'', ''passim''; Beach, ''Dust on the Sea'', ''passim''; Grider, George. ''War Fish'', ''passim''; Blair, Clay, Jr. ''Silent Victory'' (New York: Bantam, 1976), ''passim''.</ref> Some officers became highly skilled in its use,<ref>[[Robert E. Dornin|Dusty Dornin]] was widely agreed to be the best. Blair, p.357.</ref> and the navy set up a training school for its use.<ref>Blair, p.357.</ref>
The Essays of Warren Buffett by Lawrence Cunningha<br>
 
"The Thank you Economy" by Gary Vaynerchu<br>
Two [[Greater Underwater Propulsion Power Program|upgraded]] World War II-era U.S. Navy fleet submarines ({{USS|Tusk|SS-426|6}} and {{USS|Cutlass|SS-478|2}}) with their TDCs continue to serve with [[Taiwan Navy|Taiwan's navy]] and [[San Francisco Maritime National Historical Park|U.S. Nautical Museum]] staff are assisting them with maintaining their equipment.<ref>{{cite web|url=http://www.maritime.org/taiwan/index.htm|title=Museum documents an operating US, WW II built submarine in Taiwan.|accessdate=2008-07-13}}</ref> The museum also has a fully restored and functioning TDC from {{USS|Pampanito|SS-383|6}}, docked in [[San Francisco]].
"Purple cow" by Seth Godi<br>
 
9. I love your writing, so do so many others out there. Who are your favorite writers<br>
==Background==
"Jesus's Son" by Denis Johnson is the best collection of short stories ever written. I'm afraid I really don't like his novels though<br>
 
"Tangents" by M. Prado. A beautiful series of graphic stories about relationships<br>
===History===
Other writers: Miranda July, Ariel Leve, Mary Gaitskill, Charles Bukowski, Celine, Sam Lipsyte, William Vollmann, Raymond Carver. Arthur Nersesian. Stephen Dubner<br>
The problem of aiming a [[torpedo]] has occupied military engineers since [[Robert Whitehead]] developed the modern torpedo in the 1860s. These early torpedoes ran at a preset depth on a straight course (consequently they are frequently referred to as "straight runners"). This was the state of the art in torpedo guidance until the development of the homing torpedo during the latter part of [[World War II]].<ref name=othertorps>There were other forms of torpedo guidance attempted throughout WWII. Notable are the Japanese human-guided ''[[Kaiten]]'' and German [[G7e#G7e/T3|pattern running]] and [[acoustic homing]] types for attacking convoys. Today, most submarine-launched torpedoes are wire-guided with terminal homing.</ref> The vast majority of submarine torpedoes during World War II were straight running and these continued in use for many years after World War II.<ref name=USMk14his>{{cite web|url = http://www.geocities.com/Pentagon/1592/ustorp5.htm|title= Part Five: Post WW-II Submarine Launched/ Heavyweight Torpedoes|accessdate=2006-07-26|author= Frederick J Milford|date= October 1997|work= US Navy Torpedoes|archiveurl=http://web.archive.org/web/20060523064716/http://www.geocities.com/Pentagon/1592/ustorp5.htm|archivedate=2006-05-23}}</ref> In fact, two World War II-era straight running torpedoes — fired by the British nuclear-powered submarine {{HMS|Conqueror|S48|6}} — sank the [[ARA General Belgrano|ARA ''General Belgrano'']] in 1982.
Many writers are only really good storytellers. Most writers come out of a cardboard factory MFA system and lack a real voice. A real voice is where every word exposes ten levels of hypocrisy in the world and brings us all the way back to see reality. The writers above have their own voices, their own pains, and their unique ways of expressing those pains. Some of them are funny. Some a little more dark. I wish I could write 1/10 as good as any of them<br><br>
 
10. You are a prolific writer. Do you have any hacks that help you write a lot in little time<br>
During [[World War I]], computing a target intercept course for a torpedo was a manual process where the fire control party was aided by various [[slide rule]]s<ref name=fleetsub>{{cite web | title = Torpedo Data Computer | work = FleetSubmarine.com | year = 2002 | url = http://www.maritime.org/tdc.htm | accessdate = 2006-07-03 }}
Coffee, plus everything else coffee does for you first thing in the morning<br>
</ref> (the U.S. examples were colloquially called "banjo", for its shape, and "Is/Was", for predicting where a target will be based on where it is and was)<ref>Holwitt, Joel I. ''"Execute Against Japan"'', Ph.D. dissertation, Ohio State University, 2005, p.147; Beach, Edward L., Jr. ''Run Silent, Run Deep''.</ref> or mechanical calculator/sights.<ref name = dread>{{cite web |title = Firing a Torpedo Using A Mechanical Computing Sight |work=The Dreadnought Project |url =http://www.dreadnoughtproject.org/tfs/index.php/Torpedo_Director|year=2000
Only write about things you either love or hate. But if you hate something, try to find a tiny gem buried in the bag of dirt so you can reach in when nobody is looking and put that gem in your pocket. Stealing a diamond in all the shit around us and then giving it away for free via writing is a nice little hack, Being fearless precisely when you are most scared is the best hack<br><br>
|accessdate=2006-07-11}}</ref> These were often "woefully inaccurate",<ref>Holwitt, p. 147.</ref> which helps explain why torpedo spreads were advised.
11. I totally get and love your idea about bleeding as a writer, appreciate if you share more with the readers of this blog<br>
 
Most people worry about what other people think of them. Most people worry about their health. Most people are at a crossroads and don't know how to take the next step and which road to take it on. Everyone is in a perpetual state of 'where do I put my foot next'. Nobody, including me, can avoid that<br>
During World War II, Germany,<ref>[http://www.msichicago.org/exhibit/U505/virtualtour/photo_tour/contower.html]</ref> Japan,<ref>[http://web.ukonline.co.uk/chalcraft/sm/attack.html Britain]</ref> and the United States each developed [[analog computer]]s to automate the process of computing the required torpedo course.<ref name=JapanTechnology>{{cite book | last = Jackson, USNR | first = Lt.(jg) J.G. | url=http://www.fischer-tropsch.org/primary_documents/gvt_reports/USNAVY/USNTMJ%20Reports/USNTMJ-200F-0086-0124%20Report%20O-32.pdf | title = Japanese Torpedo Fire Control | date = February 1946 | publisher = US Naval Technical Mission to Japan | id = Fascicle O-1, Target O-32 | format=PDF}}</ref>
You and I both need to wash our faces in the morning, brush our teeth, shower, shit, eat, fight the weather, fight the colds that want to attack us if we're not ready. Fight loneliness or learn how to love and appreciate the people who want to love you back. And learn how to forgive and love the people who are even more stupid and cruel than we are. We're afraid to tell each other these things because they are all both disgusting and true<br>
 
You and I both have the same color blood. If I cut my wrist open you can see the color of my blood. You look at it and see that it's the same color as yours. We have something in common. It doesn't have to be shameful. It's just red. Now we're friends. No matter whom you are or where you are from. I didn't have to lie to you to get you to be my friend<br>
In 1932, the [[Bureau of Ordnance]] (BuOrd) initiated development of the TDC with [[Arma Corporation]] and [[Ford Instruments]].<ref name="Holwitt, p.147">Holwitt, p.147.</ref> This culminated in the "very complicated" Mark 1 in 1938.<ref name="Holwitt, p.147"/> This was retrofitted into older boats, beginning with [[USS Dolphin (SS-169)|''Dolphin'']] and up through the newest [[Salmon class submarine|''Salmon'']]s.<ref name="Holwitt, p.147"/>
Related Links<br>
 
How to be a Psychic in Ten Easy Lesson<br>
The first submarine designed to use the TDC was {{USS|Tambor|SS-198|2}},<ref name=Tambor>{{cite web | last = Mohl | first = Michael | title = Tambor (SS-198) | work = NavSource Online: Submarine Photo Archive | year = 2006 | url = http://www.navsource.org/archives/08/08198.htm | accessdate = 2006-08-01 }}</ref> launched in 1940 with the Mark III, located in the [[conning tower]].<ref name="Holwitt, p.147"/> (This differed from earlier outfits.)<ref>Beach, Edward L., Jr. ''Dust on the Sea''.</ref> It proved to be the best torpedo fire control system of [[World War II]].<ref>Holwitt, p.147; Friedman, Norman. ''U.S. Submarines Through 1945'' (Annapolis: U.S. Naval Institute Press, 1995), p.195.</ref><!--This appears to conflict with the Technical Mission assessment.-->
My New Year's Resolution in 199<br>
 
12. What is your advice for young entrepreneurs<br>
In 1943, the Torpedo Data Computer Mark IV was developed to support the [[Mark 18 torpedo|Mark 18]] torpedo.<ref name=Mk18>The Mark 18 was electric and therefore wakeless and difficult for surface forces to trace. On the downside, it was slower than the Mark 14. This made it more difficult to aim accurately because larger gyro angles were involved. Even so, thousands of them were fired during WWII.</ref><ref name=clearMk18>{{cite book | last = O'Kane | first = Richard | title = Clear The Bridge:The War Patrols of the U.S.S. Tang | publisher = Bantam Books | year = 1977 | location = New York | pages = 221 | id = ISBN= 0-553-14516-9}}</ref>
Only build something you really want to use yourself. There's got to be one thing you are completely desperate for and no matter where you look you can't find it. Nobody has invented it yet. So there you go - you invent it. If there's other people like you, you have a business. Else. You fail. Then do it again. Until it works. One day it will<br>
 
Follow these 100 Rules<br>
Both the Mk III and Mk IV TDC were developed by Arma Corporation (now American Bosch Arma).
The 100 Rules for Being a Good Entrepreneur<br>
 
And, in particular this<br>
===The problem of aiming a straight-running torpedo===
The Easiest Way to Succeed as an Entrepreneu<br>
[[Image:FiringGeometry.png|noframe|thumb|Figure 2: Illustration of general torpedo fire-control problem]]
In my just released book I have more chapters on my experiences as an entrepreneur<br>
 
13. I advocate the concept of working at a job while building your business. You have of course lived it. Now as you look back, what is your take on this? Is it possible to make it work while sailing on two boats<br><br>
A straight-running torpedo has a [[gyroscope]]-based control system that ensures that the torpedo will run a straight course. The torpedo can run on a course different from that of the submarine by adjusting a parameter called the gyro angle, which sets the course of the torpedo relative to the course of the submarine (see Figure 2). The primary role of the TDC is to determine the gyro angle setting required to ensure that the torpedo will strike the target.
Your boss wants everything out of you. He wants you to work 80 hours a week. He wants to look good taking credit for your work. He wants your infinite loyalty. So you need something back<br>
 
Exploit your employer. It's the best way to get good experience, clients, contacts. It's a legal way to steal. It's a fast way to be an entrepreneur because you see what large companies with infinite money are willing to pay for. If you can provide that, you make millions. It's how many great businesses have started and will always start. It's how every exit I've had started<br><br>
Determining the gyro angle required the real-time solution of a complex [[Trigonometry|trigonometric]] equation (see Equation 1 for a simplified example). The TDC provided a continuous solution to this equation using data updates from the submarine's navigation sensors and the TDC's target tracker. The TDC was also able to automatically update all torpedo gyro angle settings simultaneously with a fire control solution, which improved the accuracy over systems that required manual updating of the torpedo's course.<ref name=AutomatedGyroSetting>{{cite book | last = Friedman | first = Norman | title = US Submarines Through 1945: An Illustrated Design History | year = 1995 | publisher = Naval Institute Press | isbn=1-55750-263-3 | pages = 196 }}</ref>
14. Who is a "person with true moral fiber"? In current times are there any role models who are people with true moral fiber<br>
 
I don't really know the answer. I think I know a few people like that. I hope I'm someone like that. And I pray to god the people I'm invested in are like that and my family is like that<br>
The TDC enables the submarine to launch the torpedo on a course different from that of the submarine, which is important tactically. Otherwise the submarine would need to be pointed at the projected intercept point in order to launch a torpedo.<ref name="GyroPointing">Torpedoes were developed by the United States with this capability during WWI. However, without automated fire control it was difficult to realize the full advantages of this approach.</ref> Requiring the entire vessel to be pointed in order to launch a torpedo would be time consuming, require precise submarine course control, and would needlessly complicate the torpedo firing process. The TDC with target tracking gives the submarine the ability to maneuver independently of the required target intercept course for the torpedo.
I find most people to be largely mean and stupid, a vile combination. It's not that I'm pessimistic or cynical. I'm very much an optimist. It's just reality. Open the newspaper or turn on the TV and watch these people<br>
 
Moral fiber atrophies more quickly than any muscle on the body. An exercise I do every morning is to promise myself that "I'm going to save a life today" and then leave it in the hands of the Universe to direct me how I can best do that. Through that little exercise plus the Daily Practice described above I hope to keep regenerating that fiber<br>
As is shown in Figure 2, in general, the torpedo does not actually move in a straight path immediately after launch and it does not instantly accelerate to full speed, which are referred to as torpedo ballistic characteristics. The ballistic characteristics are described by three parameters: reach, turning radius, and corrected torpedo speed. Also, the target bearing angle is different from the point of view of the periscope versus the point of view of the torpedo, which is referred to as torpedo tube parallax.<ref name = parallax>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 1–12 | chapter = Definitions | accessdate = 2006-08-22 }}</ref> These factors are a significant complication in the calculation of the gyro angle and the TDC must compensate for their effects.
15.   Your message to the readers of this blog<br>
 
Skip dinner. But follow me on Twitter.<br>
Straight running torpedoes were usually launched in salvo (i.e. multiple launches in a short period of time)<ref name="spread">{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 1–9 | chapter = Definitions | accessdate = 2006-08-22 }}</ref> or a spread (i.e. multiple launches with slight angle offsets)<ref name="spread"/> to increase the probability of striking the target given the inaccuracies present in the measurement of angles, target range, target speed, torpedo track angle, and torpedo speed.
Read more posts on The Altucher Confidential �
 
More from The Altucher Confidentia<br>
Salvos and spreads were also launched to strike tough targets multiple times to ensure their destruction.<ref name = doctrine>{{cite book | title = Current Submarine Doctrine | editor = Commander Submarine Force, Pacific Fleet | origdate = 1944-02 | date = 2006-02-17 | pages = paragraph 4614 | chapter = Attacks -- General (Chapter IV, Section 1) | chapterurl = http://www.history.navy.mil/library/online/ss-doc-4.htm | url = http://www.history.navy.mil/library/online/sub_doctrine.htm | accessdate = 2006-07-02 }}</ref> The TDC supported the firing of torpedo salvos by allowing short time offsets between firings and torpedo spreads by adding small angle offsets to each torpedo's gyro angle. Before the [[ROKS Cheonan sinking|sinking]] of [[South Korea]]'s [[ROKS Cheonan (PCC-772)|ROKS ''Cheonan'']] by [[North Korea]] in 2010, the last warship sunk by a submarine torpedo attack, the [[ARA General Belgrano|ARA ''General Belgrano'']] in 1982, was struck by two torpedoes from a three torpedo spread.<ref name=belgrano_attack>{{citation| url=http://www.geocities.com/nmdecke/Submarines.html| title = Submarines 1950-2000, a study in unused potential| accessdate = 2006-08-20| author = Nathan Decker | date = July 2005|archiveurl=http://web.archive.org/web/20070317172208/http://www.geocities.com/nmdecke/Submarines.html|archivedate=2007-03-17}}</ref>
Life is Like a Game. Here�s How You Master ANY Gam<br><br>
[[Image:TDC innerds.JPG|thumb|right|A look inside the TDC]]
Step By Step Guide to Make $10 Million And Then Totally Blow <br><br>
 
Can You Do One Page a Day?
To accurately compute the gyro angle for a torpedo in a general engagement scenario, the target course, range, and bearing must be accurately known. During World War II, target course, range, and bearing estimates often had to be generated using periscope observations, which were highly subjective and error prone. The TDC was used to refine the estimates of the target's course, range, and bearing through a process of
*estimating the target's course, speed, and range based on observations.
*using the TDC to predict the target's position at a future time based on the estimates of the target's course, speed, and range.
*comparing the predicted position against the actual position and correcting the estimated parameters as required to achieve agreement between the predictions and observation. Agreement between prediction and observation means that the target course, speed, and range estimates are accurate.
 
Estimating the target's course was generally considered the most difficult of the observation tasks. The accuracy of the result was highly dependent on the experience of the skipper. During combat, the actual course of the target was not usually determined but instead the skippers determined a related quantity called "[[angle on the bow]]." Angle on the bow is the angle formed by the target course and the line of sight to the submarine. Some skippers, like the legendary [[Dick O'Kane|Richard O'Kane]], practiced determining the angle on the bow by looking at [[Imperial Japanese Navy|IJN]] ship models mounted on a calibrated [[lazy Susan]] through an inverted binocular barrel.<ref name="Okane">{{cite book | last = O'Kane | first = RIchard H. | title = Wahoo: The Patrols of America's Most Famous World War II Submarine | origyear = 1987 | accessdate = 2006-10-22 | edition = Bantam | year = 1989 | publisher = Bantam | location = New York | isbn= 0-553-28161-5 | pages = 108–109 | chapter = Part 4: Chapter 1  }}</ref>
 
To generate target position data versus time, the TDC needed to solve the equations of motion for the target relative to the submarine. The equations of motion are differential equations and the TDC used mechanical integrators to generate its solution.<ref name=CBC>{{cite web | last = Bromley | first = Allan | title = Analog Computing Devices | work = Computing Before Computers | year = 1990 | url = http://ed-thelen.org/comp-hist/CBC.html | accessdate = 2006-07-22 }}</ref>
 
The TDC needed to be positioned near other [[fire-control system|fire control]] equipment to minimize the amount of electromechanical interconnect. Because submarine space within the pressure hull was limited, the TDC needed to be as small as possible. On World War II submarines, the TDC and other fire control equipment was mounted in the [[conning tower]], which was a very small space.<ref name=silent>{{cite video | people = Wise, Robert (Director-One scene shows how cramped a conning tower could be.) |date = 1958 | title = Run Silent, Run Deep | medium = Film | location = Pacific Ocean}}</ref>
The packaging problem was severe and the performance of some early torpedo fire control equipment was hampered by the need to make it small.<ref name=USSubHis>{{cite book | last = Friedman | first = Norman | title = US Submarines Through 1945: An Illustrated Design History | year = 1995 | publisher = Naval Institute Press | isbn=1-55750-263-3 | pages = 350  }}</ref>
 
===TDC functional description===
Since the TDC actually performed two separate functions, generating target position estimates and computing torpedo firing angles, the TDC actually consisted of two types of analog computers:
 
*Angle solver: This computer calculates the required gyro angle. The TDC had separate angle solvers for the forward and aft torpedo tubes.
*Position keeper: This computer generates a continuously updated estimate of the target position based on earlier target position measurements.<ref name = positionkeeper>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 4–2 | chapter = Chapter 4: The Torpedo Fire Control Party | accessdate = 2006-08-22 }}</ref>
 
====Angle solver====
The equations implemented in the angle solver can be found in the Torpedo Data Computer manual.<ref name="tdcv3">{{cite book | editor = Bureau of Ordnance | title = Torpedo Data Compter Mk 3 Mods 5 to 12| origdate = 1944-06 | date = June 1944 | url = http://www.hnsa.org/doc/tdc/index.htm }}</ref> The Submarine Torpedo Fire Control Manual<ref name="tdc">{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | accessdate = 2006-08-22 }}</ref> discusses the calculations in a general sense and a greatly abbreviated form of that discussion is presented here.
 
The general torpedo fire control problem is illustrated in Figure 2. The problem is made more tractable if we assume:
*The periscope is on the line formed by the torpedo running along its course
*The target moves on a fixed course and speed
*The torpedo moves on a fixed course and speed
 
[[Image:Intercept.png|noframe|thumb|Figure 3: The torpedo fire control triangle]]
 
As can be seen in Figure 2, these assumptions are not true in general because of the torpedo ballistic characteristics and torpedo tube parallax. Providing the details as to how to correct the torpedo gyro angle calculation for ballistics and parallax is complicated and beyond the scope of this article. Most discussions of gyro angle determination take the simpler approach of using Figure 3, which is called the torpedo fire control triangle.<ref name="clear"/><ref name = "wahoo"/> Figure 3 provides an accurate model for computing the gyro angle when the gyro angle is small, usually less than 30°.<ref name = SmallGyro>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 8–8, 8–9 | chapter = Theory of Approach and Attack | accessdate = 2006-08-19 }}</ref>
 
The effects of parallax and ballistics are minimal for small gyro angle launches because the course deviations they cause are usually small enough to be ignorable. U.S. submarines during World War II preferred to fire their torpedoes at small gyro angles because the TDC's fire control solutions were most accurate for small angles.<ref name = Doctrine>{{cite book | editor = Commander Submarine Force, Pacific Fleet | title = Current Submarine Doctrine | origdate = 1944-02 | url = http://www.history.navy.mil/library/online/sub_doctrine.htm | accessdate = 2006-08-19 | publisher = Department of the Navy | date = 2006-02-17 | id = USF 25(A) | pages = paragraph 4509 | chapter = Attacks -- General (Chapter IV, Section 1) | chapterurl = http://www.history.navy.mil/library/online/ss-doc-4.htm. }}</ref>
 
The problem of computing the gyro angle setting is a trigonometry problem that is simplified by first considering the calculation of the deflection angle, which ignores torpedo ballistics and parallax.<ref name = Deflection>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url =  http://www.hnsa.org/doc/attack/index.htm | pages = 1–2 | chapter = Definitions | accessdate = 2006-08-19 }}</ref>
For small gyro angles, ''θ<sub>Gyro</sub> ≈ θ<sub>Bearing</sub> - θ<sub>Deflection</sub>''. A direct application of the [[law of sines]] to Figure 3 produces Equation 1.
<div style="background:#f8f8f8; float:left; width:80px;margin:0 0 0em 0em; padding:0 1em; border:0px solid #bbb;" >(Equation 1)
</div>
<div style="background:#F8F8F8; float;margin:0 0 0em 0em; padding:0 0em;">
<math>\frac{\left \Vert v_{Target} \right \| }{ \sin(\theta_{Deflection}) } = \frac{\left \Vert v_{Torpedo} \right \| }{ \sin(\theta_{Bow}) } </math> </div>
where
:''v<sub>Target</sub>'' is the velocity of the target.
:''v<sub>Torpedo</sub>'' is the velocity of the torpedo.
:''θ<sub>Bow</sub>'' is the angle of the target ship bow relative to the periscope line of sight.
:''θ<sub>Deflection</sub>'' is the angle of the torpedo course relative to the periscope line of sight.
 
Range plays no role in Equation 1, which is true as long as the three assumptions are met. In fact, Equation 1 is the same equation solved by the mechanical sights of [http://www.history.navy.mil/photos/images/h41000/h41761.jpg steerable torpedo tubes] used on surface ships during World War I and World War II. Torpedo launches from steerable torpedo tubes meet the three stated assumptions well. However, an accurate torpedo launch from a submarine requires parallax and torpedo ballistic corrections when gyro angles are large. These corrections require knowing range accurately. When the target range was not known, torpedo launches requiring large gyro angles were not recommended.<ref name = AccurateRange>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 8–10 | chapter = Chapter 8: Theory of Approach and Attack |  accessdate = 2006-08-21 }}</ref>
 
Equation 1 is frequently modified to substitute track angle for deflection angle (track angle is defined in Figure 2, ''θ<sub>Track</sub>=θ<sub>Bow</sub>+θ<sub>Deflection</sub>''). This modification is illustrated with Equation 2.
<div style="background:#f8f8f8; float:left; width:80px;margin:0 0 0em 0em; padding:0 1em; border:0px solid #bbb;" >(Equation 2)
</div>
<div style="background:#F8F8F8; float;margin:0 0 0em 0em; padding:0 0em;">
<math>\frac{\left \Vert v_{Target} \right \| }{ \sin(\theta_{Deflection}) } = \frac{\left \Vert v_{Torpedo} \right \| }{ \sin(\theta_{Track}-\theta_{Deflection})}</math>
</div>
 
where
:''θ<sub>Track</sub>'' is the angle between the target ship's course and the torpedo's course.
 
[[Image:DeflectionAngle.png|noframe|thumb|Figure 4: Deflection angle versus track angle and target speed (''θ<sub>Gyro</sub> = 0<sup>o</sub>'').]]
 
A number of publications<ref name = OptimumTrackAngle>{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url =  http://www.hnsa.org/doc/attack/index.htm | pages = 8–9 | chapter = Chapter 8: Theory of Approach and Attack |  accessdate = 2006-08-19 }}</ref><ref name="Clear2">{{cite book | last = O'Kane | first = Richard | title = Clear The Bridge:The War Patrols of the U.S.S. Tang | publisher = Bantam Books | year = 1977 | location = New York | chapter = Part V, Chapter 3 | page = 303 | isbn= 0-553-14516-9}}</ref> state the optimum torpedo track angle as 110° for a Mk 14 (46 knot weapon). Figure 4 shows a plot of the deflection angle versus track angle when the gyro angle is 0° (''i.e''., ''θ<sub>Deflection</sub>=θ<sub>Bearing</sub>'').<ref name="track">Most work on computing intercept angles is done using track angle as a variable. This is because track angle is a strictly a function of the target's course and speed along with the torpedo's course and speed. It removes the complexities associated with parallax and torpedo ballistics.</ref> Optimum track angle is defined as the point of minimum deflection angle sensitivity to track angle errors for a given target speed. This minimum occurs at the points of zero slope on the curves in Figure 4 (these points are marked by small triangles).
 
The curves show the solutions of Equation 2 for deflection angle as a function of target speed and track angle. Figure 4 confirms that 110° is the optimum track angle for a {{convert|16|kn|km/h|0|sing=on}} target, which would be a common ship speed.<ref name = TargetSpeed>
{{cite book | editor = Commander Submarine Force, United States Atlantic Fleet | title = Submarine Torpedo Fire Control Manual | origdate = 1950-02 | date = 2006-04-16 | url = http://www.hnsa.org/doc/attack/index.htm | pages = 5–25 | chapter = Chapter 5: Duties of the Fire Control Party |  accessdate = 2006-08-19 }}</ref>
 
There is fairly complete documentation available for a Japanese torpedo fire control computer that goes through the [http://home.comcast.net/~mbiegert/Work/HistOfTech/TDC/Model.htm details of correcting for the ballistic and parallax factors]. While the TDC may not have used exactly the same approach, it was likely very similar.
 
====Position keeper====
As with the angle solver the equations implemented in the angle solver can found in the Torpedo Data Computer manual.<ref name="tdcv3" /> Similar functions were implemented in the rangekeepers for surface ship-based fire control systems. For a general discussion of the principles behind the position keeper, see [[Rangekeeper]].
 
==Notes and references==
{{reflist|2}}
 
==External links==
*[http://www.maritime.org/tdc.htm USS Pampanito: Article on the Pampanito's TDC.]
*[http://www.usscod.org/tdc.html Torpedo Data Computer Mk IV]
*[http://web.mit.edu/STS.035/www/PDFs/Newell.pdf A. Ben Clymer: ''The mechanical analog Computers of Hannibal Ford and William Newell''], IEEE Annals of the history of computing
*[http://www.bergall.org/320/patrol/torpedo.html US Torpedo History: Good description of operational use of the Mk 14, Mk 18, and Mk 23]
*[http://www.hnsa.org/doc/tdc/index.htm Original Manual for the ''Torpedo Data Computer Mark 3''], Historic naval ships association
*[http://home.comcast.net/~mbiegert/Work/HistOfTech/TDC/Model.htm Discussion of the torpedo ballistic and parallax corrections used by the Imperial Japanese Navy]
 
[[Category:Submarines]]
[[Category:Military computers]]
[[Category:Analog computers]]
[[Category:Electro-mechanical computers]]

Revision as of 23:32, 26 January 2014

U.S. Navy Mk III Torpedo Data Computer, the standard US Navy torpedo fire control computer during World War II. Later in World War II (1943), the TDC Mk III was replaced by the TDC Mk IV, which was an improved and larger version of the Mk III.

The Torpedo Data Computer (TDC) was an early electromechanical analog computer used for torpedo fire-control on American submarines during World War II. Britain, Germany, and Japan also developed automated torpedo fire control equipment, but none were as advanced as the US Navy's TDC,[1] as it was able to automatically track the target rather than simply offering an instantaneous firing solution. This unique capability of the TDC set the standard for submarine torpedo fire control during World War II.[2][3]

Replacing the previously standard hand-held slide rule-type devices (known as the "banjo" & "is/was"),[4] the TDC was designed to provide fire-control solutions for submarine torpedo firing against ships running on the surface (surface warships used a different computer).[5] It had an array of handcranks, dials, and switches for data input and display.[6] To generate a fire control solution, it required inputs on

The TDC performed the trigonometric calculations required to compute a target intercept course for the torpedo. It also had an electromechanical interface to the torpedoes, allowing it to automatically set courses while torpedos were still in their tubes, ready to be fired.

The TDC's target tracking capability was used by the fire control party to continuously update the fire control solution even while the submarine was maneuvering. The TDC's target tracking ability also allowed the submarine to accurately fire torpedoes even when the target was temporarily obscured by smoke or fog.

The TDC was a rather bulky addition to the sub's conning tower and required two extra crewmen: one as an expert in its maintenance, the other as its actual operator. Despite these drawbacks, the use of the TDC was an important factor in the successful commerce raiding program conducted by American submarines during the Pacific campaign of World War II. Accounts of the American submarine campaign in the Pacific often cite the use of TDC.[8][9] Some officers became highly skilled in its use,[10] and the navy set up a training school for its use.[11]

Two upgraded World War II-era U.S. Navy fleet submarines (Template:USS and Template:USS) with their TDCs continue to serve with Taiwan's navy and U.S. Nautical Museum staff are assisting them with maintaining their equipment.[12] The museum also has a fully restored and functioning TDC from Template:USS, docked in San Francisco.

Background

History

The problem of aiming a torpedo has occupied military engineers since Robert Whitehead developed the modern torpedo in the 1860s. These early torpedoes ran at a preset depth on a straight course (consequently they are frequently referred to as "straight runners"). This was the state of the art in torpedo guidance until the development of the homing torpedo during the latter part of World War II.[13] The vast majority of submarine torpedoes during World War II were straight running and these continued in use for many years after World War II.[14] In fact, two World War II-era straight running torpedoes — fired by the British nuclear-powered submarine Template:HMS — sank the ARA General Belgrano in 1982.

During World War I, computing a target intercept course for a torpedo was a manual process where the fire control party was aided by various slide rules[15] (the U.S. examples were colloquially called "banjo", for its shape, and "Is/Was", for predicting where a target will be based on where it is and was)[16] or mechanical calculator/sights.[17] These were often "woefully inaccurate",[18] which helps explain why torpedo spreads were advised.

During World War II, Germany,[19] Japan,[20] and the United States each developed analog computers to automate the process of computing the required torpedo course.[21]

In 1932, the Bureau of Ordnance (BuOrd) initiated development of the TDC with Arma Corporation and Ford Instruments.[22] This culminated in the "very complicated" Mark 1 in 1938.[22] This was retrofitted into older boats, beginning with Dolphin and up through the newest Salmons.[22]

The first submarine designed to use the TDC was Template:USS,[23] launched in 1940 with the Mark III, located in the conning tower.[22] (This differed from earlier outfits.)[24] It proved to be the best torpedo fire control system of World War II.[25]

In 1943, the Torpedo Data Computer Mark IV was developed to support the Mark 18 torpedo.[26][27]

Both the Mk III and Mk IV TDC were developed by Arma Corporation (now American Bosch Arma).

The problem of aiming a straight-running torpedo

Figure 2: Illustration of general torpedo fire-control problem

A straight-running torpedo has a gyroscope-based control system that ensures that the torpedo will run a straight course. The torpedo can run on a course different from that of the submarine by adjusting a parameter called the gyro angle, which sets the course of the torpedo relative to the course of the submarine (see Figure 2). The primary role of the TDC is to determine the gyro angle setting required to ensure that the torpedo will strike the target.

Determining the gyro angle required the real-time solution of a complex trigonometric equation (see Equation 1 for a simplified example). The TDC provided a continuous solution to this equation using data updates from the submarine's navigation sensors and the TDC's target tracker. The TDC was also able to automatically update all torpedo gyro angle settings simultaneously with a fire control solution, which improved the accuracy over systems that required manual updating of the torpedo's course.[28]

The TDC enables the submarine to launch the torpedo on a course different from that of the submarine, which is important tactically. Otherwise the submarine would need to be pointed at the projected intercept point in order to launch a torpedo.[29] Requiring the entire vessel to be pointed in order to launch a torpedo would be time consuming, require precise submarine course control, and would needlessly complicate the torpedo firing process. The TDC with target tracking gives the submarine the ability to maneuver independently of the required target intercept course for the torpedo.

As is shown in Figure 2, in general, the torpedo does not actually move in a straight path immediately after launch and it does not instantly accelerate to full speed, which are referred to as torpedo ballistic characteristics. The ballistic characteristics are described by three parameters: reach, turning radius, and corrected torpedo speed. Also, the target bearing angle is different from the point of view of the periscope versus the point of view of the torpedo, which is referred to as torpedo tube parallax.[30] These factors are a significant complication in the calculation of the gyro angle and the TDC must compensate for their effects.

Straight running torpedoes were usually launched in salvo (i.e. multiple launches in a short period of time)[31] or a spread (i.e. multiple launches with slight angle offsets)[31] to increase the probability of striking the target given the inaccuracies present in the measurement of angles, target range, target speed, torpedo track angle, and torpedo speed.

Salvos and spreads were also launched to strike tough targets multiple times to ensure their destruction.[32] The TDC supported the firing of torpedo salvos by allowing short time offsets between firings and torpedo spreads by adding small angle offsets to each torpedo's gyro angle. Before the sinking of South Korea's ROKS Cheonan by North Korea in 2010, the last warship sunk by a submarine torpedo attack, the ARA General Belgrano in 1982, was struck by two torpedoes from a three torpedo spread.[33]

A look inside the TDC

To accurately compute the gyro angle for a torpedo in a general engagement scenario, the target course, range, and bearing must be accurately known. During World War II, target course, range, and bearing estimates often had to be generated using periscope observations, which were highly subjective and error prone. The TDC was used to refine the estimates of the target's course, range, and bearing through a process of

  • estimating the target's course, speed, and range based on observations.
  • using the TDC to predict the target's position at a future time based on the estimates of the target's course, speed, and range.
  • comparing the predicted position against the actual position and correcting the estimated parameters as required to achieve agreement between the predictions and observation. Agreement between prediction and observation means that the target course, speed, and range estimates are accurate.

Estimating the target's course was generally considered the most difficult of the observation tasks. The accuracy of the result was highly dependent on the experience of the skipper. During combat, the actual course of the target was not usually determined but instead the skippers determined a related quantity called "angle on the bow." Angle on the bow is the angle formed by the target course and the line of sight to the submarine. Some skippers, like the legendary Richard O'Kane, practiced determining the angle on the bow by looking at IJN ship models mounted on a calibrated lazy Susan through an inverted binocular barrel.[34]

To generate target position data versus time, the TDC needed to solve the equations of motion for the target relative to the submarine. The equations of motion are differential equations and the TDC used mechanical integrators to generate its solution.[35]

The TDC needed to be positioned near other fire control equipment to minimize the amount of electromechanical interconnect. Because submarine space within the pressure hull was limited, the TDC needed to be as small as possible. On World War II submarines, the TDC and other fire control equipment was mounted in the conning tower, which was a very small space.[36] The packaging problem was severe and the performance of some early torpedo fire control equipment was hampered by the need to make it small.[37]

TDC functional description

Since the TDC actually performed two separate functions, generating target position estimates and computing torpedo firing angles, the TDC actually consisted of two types of analog computers:

  • Angle solver: This computer calculates the required gyro angle. The TDC had separate angle solvers for the forward and aft torpedo tubes.
  • Position keeper: This computer generates a continuously updated estimate of the target position based on earlier target position measurements.[38]

Angle solver

The equations implemented in the angle solver can be found in the Torpedo Data Computer manual.[39] The Submarine Torpedo Fire Control Manual[40] discusses the calculations in a general sense and a greatly abbreviated form of that discussion is presented here.

The general torpedo fire control problem is illustrated in Figure 2. The problem is made more tractable if we assume:

  • The periscope is on the line formed by the torpedo running along its course
  • The target moves on a fixed course and speed
  • The torpedo moves on a fixed course and speed
Figure 3: The torpedo fire control triangle

As can be seen in Figure 2, these assumptions are not true in general because of the torpedo ballistic characteristics and torpedo tube parallax. Providing the details as to how to correct the torpedo gyro angle calculation for ballistics and parallax is complicated and beyond the scope of this article. Most discussions of gyro angle determination take the simpler approach of using Figure 3, which is called the torpedo fire control triangle.[8][9] Figure 3 provides an accurate model for computing the gyro angle when the gyro angle is small, usually less than 30°.[41]

The effects of parallax and ballistics are minimal for small gyro angle launches because the course deviations they cause are usually small enough to be ignorable. U.S. submarines during World War II preferred to fire their torpedoes at small gyro angles because the TDC's fire control solutions were most accurate for small angles.[42]

The problem of computing the gyro angle setting is a trigonometry problem that is simplified by first considering the calculation of the deflection angle, which ignores torpedo ballistics and parallax.[43] For small gyro angles, θGyro ≈ θBearing - θDeflection. A direct application of the law of sines to Figure 3 produces Equation 1.

(Equation 1)

where

vTarget is the velocity of the target.
vTorpedo is the velocity of the torpedo.
θBow is the angle of the target ship bow relative to the periscope line of sight.
θDeflection is the angle of the torpedo course relative to the periscope line of sight.

Range plays no role in Equation 1, which is true as long as the three assumptions are met. In fact, Equation 1 is the same equation solved by the mechanical sights of steerable torpedo tubes used on surface ships during World War I and World War II. Torpedo launches from steerable torpedo tubes meet the three stated assumptions well. However, an accurate torpedo launch from a submarine requires parallax and torpedo ballistic corrections when gyro angles are large. These corrections require knowing range accurately. When the target range was not known, torpedo launches requiring large gyro angles were not recommended.[44]

Equation 1 is frequently modified to substitute track angle for deflection angle (track angle is defined in Figure 2, θTrackBowDeflection). This modification is illustrated with Equation 2.

(Equation 2)

where

θTrack is the angle between the target ship's course and the torpedo's course.
Figure 4: Deflection angle versus track angle and target speed (θGyro = 0o).

A number of publications[45][46] state the optimum torpedo track angle as 110° for a Mk 14 (46 knot weapon). Figure 4 shows a plot of the deflection angle versus track angle when the gyro angle is 0° (i.e., θDeflectionBearing).[47] Optimum track angle is defined as the point of minimum deflection angle sensitivity to track angle errors for a given target speed. This minimum occurs at the points of zero slope on the curves in Figure 4 (these points are marked by small triangles).

The curves show the solutions of Equation 2 for deflection angle as a function of target speed and track angle. Figure 4 confirms that 110° is the optimum track angle for a Template:Convert target, which would be a common ship speed.[48]

There is fairly complete documentation available for a Japanese torpedo fire control computer that goes through the details of correcting for the ballistic and parallax factors. While the TDC may not have used exactly the same approach, it was likely very similar.

Position keeper

As with the angle solver the equations implemented in the angle solver can found in the Torpedo Data Computer manual.[39] Similar functions were implemented in the rangekeepers for surface ship-based fire control systems. For a general discussion of the principles behind the position keeper, see Rangekeeper.

Notes and references

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. Template:Cite web
  3. While the TDC's target tracking abilities were unique for submarine torpedo fire control during WWII, target tracking was used on surface ship torpedo fire control systems by a number of nations (see references in this article to US destroyer and Japanese torpedo fire control). The TDC was the first analog computer to miniaturize the capability enough for deployment on a submarine.
  4. Beach, Run Silent, Run Deep
  5. [1]
  6. [2]
  7. [3]
  8. 8.0 8.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  9. 9.0 9.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534; Beach, Edward L., Jr., Captain, USN (rtd). Run Silent, Run Deep, passim; Beach, Dust on the Sea, passim; Grider, George. War Fish, passim; Blair, Clay, Jr. Silent Victory (New York: Bantam, 1976), passim.
  10. Dusty Dornin was widely agreed to be the best. Blair, p.357.
  11. Blair, p.357.
  12. Template:Cite web
  13. There were other forms of torpedo guidance attempted throughout WWII. Notable are the Japanese human-guided Kaiten and German pattern running and acoustic homing types for attacking convoys. Today, most submarine-launched torpedoes are wire-guided with terminal homing.
  14. Template:Cite web
  15. Template:Cite web
  16. Holwitt, Joel I. "Execute Against Japan", Ph.D. dissertation, Ohio State University, 2005, p.147; Beach, Edward L., Jr. Run Silent, Run Deep.
  17. Template:Cite web
  18. Holwitt, p. 147.
  19. [4]
  20. Britain
  21. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  22. 22.0 22.1 22.2 22.3 Holwitt, p.147.
  23. Template:Cite web
  24. Beach, Edward L., Jr. Dust on the Sea.
  25. Holwitt, p.147; Friedman, Norman. U.S. Submarines Through 1945 (Annapolis: U.S. Naval Institute Press, 1995), p.195.
  26. The Mark 18 was electric and therefore wakeless and difficult for surface forces to trace. On the downside, it was slower than the Mark 14. This made it more difficult to aim accurately because larger gyro angles were involved. Even so, thousands of them were fired during WWII.
  27. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  28. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  29. Torpedoes were developed by the United States with this capability during WWI. However, without automated fire control it was difficult to realize the full advantages of this approach.
  30. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  31. 31.0 31.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  32. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  33. Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010
  34. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  35. Template:Cite web
  36. Template:Cite video
  37. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  38. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  39. 39.0 39.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  40. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  41. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  42. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  43. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  44. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  45. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  46. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  47. Most work on computing intercept angles is done using track angle as a variable. This is because track angle is a strictly a function of the target's course and speed along with the torpedo's course and speed. It removes the complexities associated with parallax and torpedo ballistics.
  48. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534