Western text-type: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
en>Magioladitis
m clean up / dead link template normalisation to assist db scan using AWB (10310)
 
Line 1: Line 1:
'''Power-to-weight ratio''' (or '''specific power''' or '''power-to-mass ratio''') is a calculation commonly applied to [[engine]]s and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source. It is also used as a measurement of performance of a [[vehicle]] as a whole, with the engine's [[Power (physics)|power]] output being divided by the weight (or [[mass]]) of the vehicle, to give a metric that is independent of the vehicle's size. Power-to-weight is often quoted by manufacturers at the peak value, but the actual value may vary in use and variations will affect performance.
Her name is Felicidad Ahmad. The factor I adore most flower arranging and now I have time to take on new issues. His day job is a cashier and his wage has been truly satisfying. Kansas is our birth place and my mothers and fathers reside close by.<br><br>Also visit my webpage ... [http://Kangem.com/profile/kachirnsid kangem.com]
 
The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle's performance to another. Power-to-weight ratio is equal to thrust per unit mass multiplied by the velocity of any vehicle.
 
==Power-to-weight (specific power)==
 
The power-to-weight ratio (Specific Power) formula for an engine (power plant) is the [[power (physics)|power]] generated by the engine divided by the mass. ("Weight" in this context is a colloquial term for "mass". To see this, note that what an engineer means by the "power to weight ratio" of an electric motor is not infinite in a zero gravity environment.)
 
A typical turbocharged V8 diesel engine might have an engine power of {{convert|330|hp|kW}} and a mass of {{convert|835|lb|kg}},<ref name="gmduramax">{{cite web|url=http://eogld.ecomm.gm.com/images/mediumduty/techspecs/engine.pdf|title=General Motors 2009 Data Book|date=September 5, 2008}}</ref> giving it a power-to-weight ratio of 0.65&nbsp;kW/kg&nbsp;(0.40&nbsp;hp/lb).
 
Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds. For example, the [[Space Shuttle]]'s main engines used [[turbopump]]s (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and [[liquid hydrogen]]) into the engine's combustion chamber. The original liquid hydrogen turbopump is similar in size to an automobile engine (weighing approximately {{convert|775|lb|kg}}) and produces 72,000 [[horsepower|hp]] (53.6 [[megawatt|MW]])<ref name="ssmetpb1">{{cite web|url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090004620_2008048278.pdf|publisher=[[NASA]]|title=Lessons in Systems Engineering - The SSME Weight Growth History|first=Richard|last=Ryan}}</ref> for a power-to-weight ratio of 153&nbsp;kW/kg&nbsp;(93&nbsp;hp/lb).
 
===Physical interpretation===
 
In [[classical mechanics]], instantaneous [[Power (physics)|power]] is the limiting value of the average work done per unit time as the time interval Δ''t'' approaches zero.
:<math>
P = \lim _{\Delta t\rightarrow 0} \tfrac{\Delta W(t)}{\Delta t} = \lim _{\Delta t\rightarrow 0} P_\mathrm{avg}\,
</math>
 
The typically used metrical unit of the power-to-weight ratio is <math>\tfrac{W}{kg}\;</math> which equals <math>\tfrac{m^2}{s^3}\;</math>. This fact allows one to express the power-to-weight ratio purely by [[SI base unit]]s.
 
====Propulsive power====
 
If the work to be done is [[wikt:rectilinear|rectilinear]] motion of a body with constant [[mass]] <math>m\;</math>, whose [[center of mass]] is to be accelerated along a [[Euclidean vector|straight line]] to a speed <math>|\mathbf{v}(t)|\;</math> and angle <math>\phi\;</math> with respect to the centre and [[Spherical coordinate system|radial]] of a [[gravitational field]] by an onboard [[powertrain|powerplant]], then the associated [[kinetic energy]] to be delivered to the body is equal to
 
:<math> E_K =\tfrac{1}{2} m|\mathbf{v}(t)|^2 </math>
 
where:
:<math>m\;</math> is mass of the body
:<math>|\mathbf{v}(t)|\;</math> is speed of the [[center of mass]] of the body, changing with time.
 
The instantaneous mechanical pushing/pulling power delivered to the body from the powerplant is then
 
:<math> P_K =\tfrac{1}{2} m 2|\mathbf{v}(t)| \lim _{\Delta t\rightarrow 0} \tfrac{\Delta |\mathbf{v}(t)|}{\Delta t} =  m \mathbf{a}(t) \cdot \mathbf{v}(t) = \mathbf{F}(t) \cdot \mathbf{v}(t) = \mathbf{\tau}(t) \cdot \mathbf{\omega}(t) </math>
 
where:
:<math>\mathbf{a}(t)\;</math> is acceleration of the [[center of mass]] of the body, changing with time.
:<math>\mathbf{F}(t)\;</math> is linear force - or thrust - applied upon the center of mass of the body, changing with time.
:<math>\mathbf{v}(t)\;</math> is [[velocity]] of the center of mass of the body, changing with time.
:<math>\mathbf{\tau}(t)\;</math> is [[torque]] applied upon the center of mass of the body, changing with time.
:<math>\mathbf{\omega}(t)\;</math> is [[angular velocity]] of the center of mass of the body, changing with time.
 
In propulsion, power is only delivered if the powerplant is in motion, and is transmitted to cause the body to be in motion. It is typically assumed here that mechanical transmission allows the powerplant to operate at peak output power. This assumption allows engine tuning to trade [[power band]] width and engine mass for transmission complexity and mass. [[Electric motor]]s do not suffer from this tradeoff, instead trading their high [[torque]] for [[Traction (engineering)|traction]] at low speed. The '''[[Mechanical advantage|power advantage]]''' or '''power-to-weight ratio''' is then
 
:<math> \mbox{P-to-W} = \frac{|\mathbf{a}(t)||\mathbf{v}(t)|}{|\mathbf{g}|}\;</math>
 
where:
:<math>|\mathbf{v}(t)|\;</math> is linear speed of the [[center of mass]] of the body.
 
====Engine power====
 
The actual useful power of any traction engine can be calculated using a [[dynamometer]] to measure [[torque]] and [[rotational speed]], with peak power sustained when transmission and/or operator keeps the [[dot product|product]] of torque and rotational speed maximised. For jet engines there is often a cruise speed and power can be usefully calculated there, for rockets there is typically no cruise speed, so it is less meaningful.
 
Peak power of a traction engine occurs at a rotational speed higher than the speed when torque is maximised and at or below the maximum rated rotational speed - Max RPM. A rapidly falling torque curve would correspond with sharp torque and power curve peaks around their maxima at similar rotational speed, for example a small, lightweight engine with a large turbocharger. A slowly falling or near flat torque curve would correspond with a slowly rising power curve up to a maximum at a rotational speed close to Max RPM, for example a large, heavy multi-cylinder engine suitable for cargo/hauling. A falling torque curve could correspond with a near flat power curve across rotational speeds for smooth handling at different vehicle speeds.
 
==Examples==
 
===Engines===
 
====Heat engines and heat pumps====
Thermal energy is made up from [[Sensible heat|molecular]] [[kinetic energy]] and [[Latent heat|latent]] [[Phase (matter)|phase]] energy. [[Heat engine]]s are able to convert thermal energy in the form of a temperature gradient between a hot source and a cold sink into other desirable [[Work (physics)|mechanical work]]. [[Heat pump]]s take [[Work (physics)|mechanical work]] to regenerate thermal energy in a temperature gradient. Care should be made when interpreting propulsive power, especially for jet engines and rockets, deliverable from heat engines to a vehicle.
 
{| class="wikitable"
|-
! [[Heat Engine]]/[[Heat pump]] type
! colspan=2 |Peak Power Output
! colspan=2 |Power-to-weight ratio
! Example Use
|-
| [[Wärtsilä-Sulzer RTA96-C|Wärtsilä RTA96-C]] [[Straight-14 engine|14-cylinder]] [[two-stroke]] [[turbocharger|Turbo]] [[Diesel engine]]<ref>{{cite press release|url=http://www.wartsila.com/,en,press,0,tradepressrelease,8F51527F-00A3-4C5F-ABEA-B543789ACA1B,26EE6684-06C9-48B3-920A-3B238B7C302A,,.htm|title=The world's most powerful Engine enters service|publisher=[[Wärtsilä]]|date=2006-09-12|accessdate=2010-01-12}}</ref>
| 80,080&nbsp;kW
| 108,920&nbsp;hp
| 0.03&nbsp;kW/kg
| 0.02&nbsp;hp/lb
| [[Emma Mærsk]] [[container ship]]
|-
| [[Suzuki]] 538&nbsp;cc [[V-twin engine|V2]] [[Four-stroke engine|4-stroke]] [[Gasoline|gas (petrol)]] [[Outboard motor|outboard]] [[Otto engine]]<ref>{{cite web|url=http://www.suzukimarine.com/sr_09/df25/features/|title=Suzuki Marine - DF25 - Features and Specifications|accessdate=January 12, 2010|publisher=[[Suzuki]]}}</ref>
| 19&nbsp;kW
| 25&nbsp;hp
| 0.27&nbsp;kW/kg
| 0.16&nbsp;hp/lb
| [[Runabout (boat)|Runabout boats]]
|-
| [[United States Department of Energy|DOE]]/[[NASA]]/0032-28 Mod 2 502&nbsp;cc [[Gasoline|gas (petrol)]] [[Stirling engine]]<ref name="nasa_ase">{{cite web|url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880002196_1988002196.pdf|title=Automotive Stirling Engine - Mod II Design Report|author=Noel P. Nightingale|publisher=[[NASA]] Lewis Research Center|accessdate=July 16, 2010|date=October 1986}}</ref>
| 62.3&nbsp;kW
| 83.5&nbsp;hp
| 0.30&nbsp;kW/kg
| 0.18&nbsp;hp/lb
| [[Chevrolet Celebrity]]{{Cref2|•}} 1985
|-
| [[General Motors|GM]] 6.6&nbsp;L [[Duramax V8 engine#LMM|Duramax LMM (LYE option) V8]] [[Turbocharger|Turbo]] [[Diesel engine]]<ref name="gmduramax"/>
| 246&nbsp;kW
| 330&nbsp;hp
| 0.65&nbsp;kW/kg
| 0.40&nbsp;hp/lb
| [[Chevrolet Kodiak]]{{Cref2|•}}, [[GMC Topkick]]{{Cref2|•}}
|-
| [[Junkers Jumo 205|Junkers Jumo 205A]] [[Opposed-piston engine|opposed-piston]] [[two-stroke]] [[Diesel engine]]<ref>Jane's 1989, p. 294.</ref>
| 647&nbsp;kW
| 867&nbsp;hp
| 1.1&nbsp;kW/kg
| 0.66&nbsp;hp/lb
| [[Junkers Ju 86|Ju 86C-1 airliner]], [[Blohm & Voss Ha 139|B&V Ha 139 floatplane]]
|-
| [[GE Aviation|GE]] [[General Electric LM2500|LM2500+]] marine [[turboshaft]] [[Brayton cycle|Brayton]] [[gas turbine]]<ref>{{cite web|url=http://www.geae.com/engines/marine/pdfs/datasheet_lm2500plus.pdf|title=LM2500+ Marine Gas Turbine|publisher=[[GE Aviation]]|accessdate=2010-01-25}}</ref>
| 30,200&nbsp;kW
| 40,500&nbsp;hp
| 1.31&nbsp;kW/kg
| 0.80&nbsp;hp/lb
| [[Celebrity Millennium|GTS Millennium]] [[cruiseship]], [[RMS Queen Mary 2|QM2]] [[ocean liner]]
|-
| [[Mazda Wankel engine|Mazda 13B-MSP Renesis]] 1.3&nbsp;L [[Wankel engine]]<ref>{{cite web|url=http://www.mazda.com/mazdaspirit/rotary/about/|title=Mazda - What Is A Rotary Engine?|accessdate=January 12, 2010|publisher=[[Mazda]]}}</ref>
| 184&nbsp;kW
| 247&nbsp;hp
| 1.5&nbsp;kW/kg
| 0.92&nbsp;hp/lb
| [[Mazda RX-8]]{{Cref2|•}}
|-
|rowspan=3| [[Pratt & Whitney|PW]] [[Pratt & Whitney R-4360|R-4360]] 71.5&nbsp;L 28-[[Cylinder (engine)|cylinder]] [[supercharged]] [[Radial engine]]
|rowspan=3| 3,210&nbsp;kW
|rowspan=3| 4,300&nbsp;hp
|rowspan=3| 1.83&nbsp;kW/kg
|rowspan=3| 1.11&nbsp;hp/lb
| [[B-50 Superfortress]], [[Convair B-36]]
|-
| [[C-97 Stratofreighter]], [[C-119 Flying Boxcar]]
|-
| [[Hughes H-4 Hercules]] "Spruce Goose"
|-
|rowspan=2| [[Wright Aeronautical|Wright]] [[Wright R-3350|R-3350]] 54.57&nbsp;L 18-[[Cylinder (engine)|c]] [[supercharged|s/c]] [[Turbo-compound engine|Turbo-compound]] [[Radial engine]]
|rowspan=2| 2,535&nbsp;kW
|rowspan=2| 3,400&nbsp;hp
|rowspan=2| 2.09&nbsp;kW/kg <!-- 1212 kg -->
|rowspan=2| 1.27&nbsp;hp/lb <!-- 2670 lb -->
| [[B-29 Superfortress]], [[Douglas DC-7]]
|-
| [[C-97 Stratofreighter|C-97 S/f]] prototype, [[C-119 Flying Boxcar|Kaiser-Frazer C-119F]]
|-
| [[O.S. Engines]] 49-PI Type II 4.97&nbsp;cc [[Unmanned aerial vehicle|UAV]] [[Wankel engine]]<ref>{{cite web|url=http://www.osengines.com/engines/osmg1401.html|accessdate=2010-01-08|publisher=[[O.S. Engines]]|title=UAV Wankel Engines}}</ref>
| 0.934&nbsp;kW
| 1.252&nbsp;hp
| 2.8&nbsp;kW/kg
| 1.7&nbsp;hp/lb
| [[Model aircraft]], [[Radio-controlled aircraft]]
|-
| [[GE Aviation|GE]] [[General Electric LM6000|LM6000]] marine [[turboshaft]] [[Brayton cycle|Brayton]] [[gas turbine]]<ref name="gelm6000">{{cite web|url=http://www.geae.com/engines/marine/pdfs/datasheet_lm6000.pdf|title=LM6000 Marine Gas Turbine|publisher=[[GE Aviation]]|accessdate=2010-01-25}}</ref><ref name="gelm6000_cf680c2">{{cite web|url=http://www.geae.com/aboutgeae/presscenter/marine/marine_19950523c.html|publisher= [[GE Aviation]]|accessdate=2010-01-25|title=GE's LM6000 Demonstrates Outstanding Reliability And Availability In First Two Years Of Commercial Service}}</ref>{{Disputed-inline|Jet Engines|date=December 2011}}
| rowspan=2| 44,700&nbsp;kW
| rowspan=2| 59,900&nbsp;hp
| rowspan=2| 5.67&nbsp;kW/kg
| rowspan=2| 3.38&nbsp;hp/lb
| [[Peaking power plant]]
|-
| [[GE Aviation|GE]] [[General Electric CF6#CF6-80C2|CF6-80C2]] [[Brayton cycle|Brayton]] [[High-bypass turbofan engine|high-bypass turbofan]] [[jet engine]]<ref name="gelm6000_cf680c2"/>
| [[Boeing]] [[Boeing 747|747]]{{Cref2|•}}, [[Boeing 767|767]], [[Airbus A300]]
|-
| [[Bayerische Motoren Werke|BMW]] V10 3L P84/5 2005 [[Gasoline|gas (petrol)]] [[Otto engine]]<ref>{{cite web|url=http://www.allf1.info/engines/bmw.php|accessdate=2010-01-08|publisher=All Formula One Info|title=BMW engines}}</ref>
| 690&nbsp;kW
| 925&nbsp;hp
| 7.5&nbsp;kW/kg
| 4.6&nbsp;hp/lb
| [[Williams FW27]] car{{Cref2|•}}, [[Formula One]] [[auto racing]]
|-
| [[General Electric GE90|GE90-115B]] [[Brayton cycle|Brayton]] [[turbofan]] [[jet engine]]<ref>{{cite web|url=http://www.geae.com/engines/commercial/ge90/ge90-115b.html|title=Model GE90-115B|publisher=[[GE Aviation]]|accessdate=2010-01-08}}</ref><ref>{{fr}} Jean-Claude Thevenin, ''Le turboréacteur, moteur des avions à réaction'', [[Association Aéronautique et Astronautique de France|AAAF]], June 2004 (3<sup>rd</sup> edition).</ref>{{Disputed-inline|Jet Engines|date=December 2011}}
| 83,164&nbsp;kW
| 111,526&nbsp;hp
| 10.0&nbsp;kW/kg
| 6.10&nbsp;hp/lb
| [[Boeing 777]]
|-
| [[Pratt & Whitney Rocketdyne|PWR]] [[Space Shuttle Main Engine|RS-24 (SSME)]] Block II [[Hydrogen|H<sub>2</sub>]] [[Brayton cycle|Brayton]] [[turbopump]]<ref>{{cite web|url=http://www.nasa.gov/centers/marshall/pdf/174534main_ssme.pdf|publisher=[[NASA]]|title=NASA Fact Sheet: Space Shuttle Main Engine (SSME) Enhancements|date=March 2002|location=Marshall Space Flight Center, Huntsville, Alabama|archiveurl=http://web.archive.org/web/20081026023550/http://www.nasa.gov/centers/marshall/pdf/174534main_ssme.pdf|archivedate=2008-10-26}}</ref><ref name="ssmetpb2">{{cite web|url=http://www.nasa.gov/offices/oce/llis/0750.html|publisher=[[NASA]]|title=High Performance Liquid Hydrogen Turbopumps|date=1999-02-01|accessdate=2010-01-08|archiveurl=http://web.archive.org/web/20070823131906/http://www.nasa.gov/offices/oce/llis/0750.html|archivedate=2007-08-23}}</ref>
| 63,384&nbsp;kW
| 85,000&nbsp;hp
| 138&nbsp;kW/kg <!-- 109 kg extra = 461&nbsp;kg -->
| 84&nbsp;hp/lb <!-- 240 lb extra = 1015 lb -->
| [[Space Shuttle]] ([[STS-110]] and later) {{Cref2|•}}
|-
| [[Pratt & Whitney Rocketdyne|PWR]] [[Space Shuttle Main Engine|RS-24 (SSME)]] Block I [[Hydrogen|H<sub>2</sub>]] [[Brayton cycle|Brayton]] [[turbopump]]<ref name="ssmetpb1"/>
| 53,690&nbsp;kW
| 72,000&nbsp;hp
| 153&nbsp;kW/kg <!-- 352 kg -->
| 93&nbsp;hp/lb <!-- 775 lb -->
| [[Space Shuttle]]
|}
{{Cnote2 Begin|liststyle=disc|colwidth=40em}}
{{Cnote2|•|n=0|Full vehicle power-to-weight ratio shown [[Power-to-weight ratio#Vehicles|below]]}}
{{Cnote2 End}}
 
====Electric motors/Electromotive generators====
An [[electric motor]] uses [[electrical energy]] to provide [[Work (physics)|mechanical work]], usually through the interaction of a [[magnetic fields|magnetic field]] and [[Electrical conductor|current-carrying conductors]]. By the interaction of mechanical work on an electrical conductor in a magnetic field, [[electrical energy]] can be [[Electric generator|generated]].
{| class="wikitable"
|-
! [[Electric motor]] type
! colspan=2|Weight
! colspan=2|Peak Power Output
! colspan=2|Power-to-weight ratio
! Example Use
|-
| [[Panasonic]] MSMA202S1G [[AC motor#Two-phase AC servo motors|AC]] [[servo motor]]<ref>{{cite web|url=http://industrial.panasonic.com/ww/i_e/25000/fa_pro_acs_minas_a4_e/fa_pro_acs_minas_a4_e/a4_16.pdf|title=Panasonic MINAS-A4 AC Servo - Motor Specifications and Ratings 200V MSMA|accessdate=2010-01-26}}</ref>
| 6.5&nbsp;kg
| 14.3&nbsp;lb
| 2&nbsp;kW
| 2.7&nbsp;hp
| 0.31&nbsp;kW/kg
| 0.19&nbsp;hp/lb
| [[Conveyor belt]]s, [[Robotics]]
|-
| [[Toshiba]] 660 MVA water cooled 23kV AC [[turbo generator]]
| 1,342&nbsp;t
| 2,959,000&nbsp;lb
| 660&nbsp;MW
| 885,000&nbsp;hp
| 0.49&nbsp;kW/kg
| 0.30&nbsp;hp/lb
| [[Bayswater Power Station|Bayswater]], [[Eraring Power Station|Eraring]] [[Coal-fired power station|Coal]] [[Power station]]s
|-
| Canopy Tech. Cypress 32&nbsp;MW 15&nbsp;kV AC [[Permanent magnet|PM]] [[Electrical generator|generator]]<ref>{{cite web|url=http://canopytechnologies.com/uploads/Cypress%20Family-Data%20Sheet.pdf|title=Cypress HPL Series Permanent Magnet Motors - Product Brochure|publisher=Canopy Technologies, LLC|accessdate=2010-01-26}}</ref>
| 33,557&nbsp;kg
| 73,981&nbsp;lb
| 32&nbsp;MW
| 42,913&nbsp;hp
| 0.95&nbsp;kW/kg
| 0.58&nbsp;hp/lb
| Electric [[Power station]]s
|-
| [[Toyota]] [[Brushless AC electric motor|Brushless AC]] [[Neodymium|Nd]] [[Iron|Fe]] [[Boron|B]] [[Permanent magnet|PM]] motor<ref>{{cite conference|url=http://www.birmingham.ac.uk/Documents/college-eps/metallurgy/research/Jewell.pdf | first = Geraint | last = Jewell | title=Permanent Magnet Machines and Actuators|booktitle=Symposium on Materials for a Sustainable Future|date=2009-09-11|accessdate=2010-05-14|pages=11–18|location=[[Birmingham]], England|publisher=Magnetic Materials Group, [[University of Birmingham]]}}</ref>
| 36.3&nbsp;kg
| 80.0&nbsp;lb
| 50&nbsp;kW
| 67&nbsp;hp
| 1.37&nbsp;kW/kg
| 0.84&nbsp;hp/lb
| [[Toyota Prius]]{{Cref2|•}} 2004
|-
| Himax HC6332-250 [[Brushless DC electric motor|Brushless DC motor]]<ref>{{cite web|url=http://www.maxxprod.com/pdf/HC6320-250.pdf|title=Himax Brushless Outrunner Motor HC6332-250|accessdate=2010-01-28|publisher=Maxx Products International, Inc.}}</ref>
| 0.45&nbsp;kg
| 0.99&nbsp;lb
| 1.7&nbsp;kW
| 2.28&nbsp;hp
| 3.78&nbsp;kW/kg
| 2.30&nbsp;hp/lb
| [[Radio controlled cars]]
|-
| [[Hi-Pa Drive]] HPD40 [[Brushless DC electric motor|Brushless DC]] [[wheel hub motor]]<ref>{{cite web|url=http://www.pmlflightlink.com/motors/hipa_drive.html|title=Hi-Pa Drive|accessdate=2010-03-02|publisher=[[PML Flightlink]]}} {{Dead link|date=September 2010|bot=H3llBot}}</ref>
| 25&nbsp;kg
| 55.1&nbsp;lb
| 120&nbsp;kW
| 161&nbsp;hp
| 4.8&nbsp;kW/kg
| 2.92&nbsp;hp/lb
| [[Mini (BMW)|Mini]] QED [[Hybrid electric vehicle|HEV]], [[Ford F150]] [[Hybrid electric vehicle|HEV]]
|-
| ElectriFly GPMG4805 [[Brushless DC electric motor|Brushless DC]]<ref>{{cite web|url=http://manuals.hobbico.com/gpm/gpmg4800-4805-manual.pdf|title=Great Planes ElectriFly RimFire 65cc 80-85-160 Brushless Outrunner Electric Motor|accessdate=2010-11-02}}</ref>
|1.48&nbsp;kg
|3.26&nbsp;lb
|8.4&nbsp;kW
|11.26&nbsp;hp
|5.68&nbsp;kW/kg
|3.45&nbsp;hp/lb
|[[Radio-controlled aircraft]]
|-
| EMRAX228 [[Brushless AC electric motor|Brushless AC electric Motor]]<ref>{{cite web|url=http://enstroj.si/images/stories/technical_data_emrax_228_11_2013.pdf|title=EMRAX228=2013-11-02}}</ref>
|11.9&nbsp;kg
|26.18&nbsp;lb
|100&nbsp;kW
|134&nbsp;hp
|8.4&nbsp;kW/kg
|5.12&nbsp;hp/lb
|[[Battery Electric Air Plane]]
|}
{{Cnote2 Begin|liststyle=disc|colwidth=40em}}
{{Cnote2|•|n=0|Full vehicle power-to-weight ratio shown [[Power-to-weight ratio#Vehicles|below]]}}
{{Cnote2 End}}
 
====Fluid engines and fluid pumps====
[[Fluid|Fluids (liquid and gas)]] can be used to transmit and/or store energy using [[pressure]] and other fluid properties. [[Hydraulic|Hydraulic (liquid)]] and [[Pneumatic|pneumatic (gas)]] engines convert fluid pressure into other desirable [[Work (physics)|mechanical or electrical work]]. Fluid pumps convert mechanical or electrical work into movement or pressure changes of a fluid, or storage in a [[pressure vessel]].
{| class="wikitable"
|-
! [[Fluid Power]]plant type
! colspan=2|Dry Weight
! colspan=2|Peak Power Output
! colspan=2|Power-to-weight ratio
|-
| PlatypusPower Q2/200 [[Hydropower|hydroelectric]] [[water turbine|turbine]]<ref name="platypuspower">{{cite web|url=http://www.platypuspower.com.au/240specs.html|title=Platypus Power Micro Hydro Electric Generator - Specifications|publisher=Platypus Power|accessdate=2010-01-15}}</ref>
| 43&nbsp;kg
| 95&nbsp;lb
| 2&nbsp;kW
| 2.7&nbsp;hp
| 0.047&nbsp;kW/kg
| 0.029&nbsp;hp/lb
|-
| PlatypusPower PP20/200 [[Hydropower|hydroelectric]] [[water turbine|turbine]]<ref name="platypuspower"/>
| 330&nbsp;kg
| 728&nbsp;lb
| 20&nbsp;kW
| 27&nbsp;hp
| 0.060&nbsp;kW/kg
| 0.037&nbsp;hp/lb
|-
| [[Atlas Copco]] LZL 35 [[Compressed-air engine|pneumatic motor]]<ref>{{cite web|url=http://www.atlascopco.co.uk/Images/AirMotor_catalogue.ENG_tcm795-1610751.pdf|title=Atlas Copco Air motor catalogue, page 52 - Product data at air pressure 6.3 bar (91 psi) - LZL 35 Unrestricted |publisher=[[Atlas Copco]]|accessdate=2011-09-21}}</ref>
| 20&nbsp;kg
| 44.1&nbsp;lb
| 6.5&nbsp;kW
| 8.7&nbsp;hp
| 0.33&nbsp;kW/kg
| 0.20&nbsp;hp/lb
|-
| [[Atlas Copco]] LZB 14 [[Compressed-air engine|pneumatic motor]]<ref>{{cite web|url=http://www.atlascopco.co.uk/ukus/products/navigationbyproduct/Product.aspx?id=1466515&productgroupid=1401305 |title=Atlas Copco Tools - LZB 14 Technical data |publisher=[[Atlas Copco]]|accessdate=2011-09-21}}</ref>
| 0.30&nbsp;kg
| 0.66&nbsp;lb
| 0.16&nbsp;kW
| 0.22&nbsp;hp
| 0.53&nbsp;kW/kg
| 0.33&nbsp;hp/lb
|-
| [[Robert Bosch GmbH|Bosch]] 0 607 954 307 [[Compressed-air engine|pneumatic motor]]<ref name="boschpneumatics">{{cite web|url=http://www.boschproductiontools.com/iwboptocs2-en/category.htm?ccat_id=125831|title=Bosch Production Tools - Air Tools - Motors|publisher=[[Robert Bosch GmbH|Bosch]]|accessdate=2010-01-15}}</ref>
| 0.32&nbsp;kg
| 0.71&nbsp;lb
| 0.1&nbsp;kW
| 0.13&nbsp;hp
| 0.31&nbsp;kW/kg
| 0.19&nbsp;hp/lb
|-
| [[Atlas Copco]] LZB 46 [[Compressed-air engine|pneumatic motor]]<ref>{{cite web|url=http://www.atlascopco.co.uk/ukus/products/navigationbyproduct/Product.aspx?id=1466765&productgroupid=1401305 |title=Atlas Copco Tools - LZB 46 Technical data |publisher=[[Atlas Copco]]|accessdate=2011-09-21}}</ref>
| 1.2&nbsp;kg
| 2.65&nbsp;lb
| 0.84&nbsp;kW
| 1.13&nbsp;hp
| 0.7&nbsp;kW/kg
| 0.43&nbsp;hp/lb
|-
| [[Robert Bosch GmbH|Bosch]] 0 607 957 307 [[Compressed-air engine|pneumatic motor]]<ref name="boschpneumatics"/>
| 1.7&nbsp;kg
| 3.7&nbsp;lb
| 0.74&nbsp;kW
| 0.99&nbsp;hp
| 0.44&nbsp;kW/kg
| 0.26&nbsp;hp/lb
|-
| SAI GM7 [[Hydraulic motor#Radial piston motors|radial piston]] [[hydraulic motor]]<ref>{{cite web|url=http://www.saispa.com/pdf/gm-7.pdf|title=GM Series - GM7 Hydraulic Motor|publisher=SAI|author=SAI|accessdate=2010-01-14}}</ref>
| 300&nbsp;kg
| 661&nbsp;lb
| 250&nbsp;kW
| 335&nbsp;hp
| 0.83&nbsp;kW/kg
| 0.50&nbsp;hp/lb
|-
| SAI GM3 [[Hydraulic motor#Radial piston motors|radial piston]] [[hydraulic motor]]<ref>{{cite web|url=http://www.saispa.com/pdf/gm-03.pdf|title=GM03 Motor - Extremely Compact Unit|publisher=SAI|author=SAI|accessdate=2010-01-14}}</ref>
| 15&nbsp;kg
| 33&nbsp;lb
| 15&nbsp;kW
| 20&nbsp;hp
| 1&nbsp;kW/kg
| 0.61&nbsp;hp/lb
|-
| Denison GOLD CUP P14 [[Hydraulic motor#Axial plunger motors|axial piston]] [[hydraulic motor]]<ref>{{cite web|url=http://www.launchrun.com/hpd/pdfs/GOLDCUP_SalesCatalog_HY28-2667-01-GC-NA,EU.pdf|title=Denison GOLD CUP Product Catalog|publisher=Parker Hannifin Corporation|author=Parker Hannifin Corporation|accessdate=2012-10-31}}</ref>
| 110&nbsp;kg
| 250&nbsp;lb
| 384&nbsp;kW
| 509&nbsp;hp
| 3.5&nbsp;kW/kg
| 2.0&nbsp;hp/lb
|-
| Denison TB [[Rotary vane pump|vane]] [[hydraulic pump|pump]]<ref>{{cite web|url=http://www.parker.com/literature/Vane_Pump/PDF%20Literature/SALES/TB%20Sales-1-ML083-A.pdf|title=TB Vane-Type Single Pump|publisher=Parker Hannifin Corporation|author=Denison Hydraulics|accessdate=2012-10-31}}</ref>
| 7&nbsp;kg
| 15&nbsp;lb
| 40.2&nbsp;kW
| 53.9&nbsp;hp
| 5.7&nbsp;kW/kg
| 3.6&nbsp;hp/lb
|}
 
====Thermoelectric generators and electrothermal actuators====
A variety of effects can be harnessed to produce [[thermoelectricity]], [[thermionic emission]], [[pyroelectricity]] and [[piezoelectricity]]. [[Electrical resistance]] and [[ferromagnetism]] of materials can be harnessed to generate thermoacoustic energy from an electric current.
{| class="wikitable"
|-
! [[Thermogenerator|Thermoelectric Powerplant]] type
! colspan=2|Dry Weight
! colspan=2|Peak Power Output
! colspan=2|Power-to-weight ratio
! Example Use
|-
| [[Teledyne]] [[Plutonium-238|<sup>238</sup>Pu]] [[GPHS-RTG]] 1980<ref name="GLB">{{cite web|url=http://www.fas.org/nuke/space/bennett0706.pdf|title=Space Nuclear Power|first=G.L.|last=Bennett|year=2006|publisher=[[Federation of American Scientists]]}}</ref><ref name="mmrtg">{{cite web|url=http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40238/1/06-2720.pdf|title=Development of a New Generation of High-Temperature Thermoelectric Unicouples for Space Applications|date=August 2006|publisher=[[NASA]], [[JPL]] and [[Caltech]]|first=T.|last=Caillat}}</ref>
| 56&nbsp;kg
| 123&nbsp;lb
| 285&nbsp;W
| 0.39&nbsp;hp
| 5.09&nbsp;W/kg
| 0.003&nbsp;hp/lb
| [[Galileo probe]], [[New Horizons]] probe
|-
| [[Boeing]] [[Plutonium-238|<sup>238</sup>Pu]] [[Multi-Mission Radioisotope Thermoelectric Generator|MMRTG]] [[Mars Science Laboratory|MSL]]<ref name="mmrtg"/>
| 44.1&nbsp;kg
| 97.2&nbsp;lb
| 123&nbsp;W
| 0.16&nbsp;hp
| 2.79&nbsp;W/kg
| 0.002&nbsp;hp/lb
| [[Mars Science Laboratory]]
|-
| [[HZ-20 thermoelectric module]]
| 0.115&nbsp;kg
| 0.254&nbsp;lb
| 19&nbsp;W
| 0.025&nbsp;hp
| 165&nbsp;W/kg
| 0.098&nbsp;hp/lb
| [[Hi-Z Technology Inc.]]
|}
 
===Electrochemical (galvanic) and electrostatic cell systems===
 
====(Closed cell) batteries====
All electrochemical cell batteries deliver a changing voltage as their chemistry changes from "charged" to "discharged". A nominal output voltage and a cutoff voltage are typically specified for a battery by its manufacturer. The output voltage falls to the cutoff voltage when the battery becomes "discharged". The nominal output voltage is always less than the open-circuit voltage produced when the battery is "charged". The temperature of a battery can affect the power it can deliver, where lower temperatures reduce power. Total energy delivered from a single charge cycle is affected by both the battery temperature and the power it delivers. If the temperature lowers or the power demand increases, the total energy delivered at the point of "discharge" is also reduced.
 
Battery discharge profiles are often described in terms of a factor of [[Battery (electricity)#Capacity and discharging|battery capacity]]. For example a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide a higher discharge current - and therefore higher power-to-weight ratio - but only with a lower energy capacity. Power-to-weight ratio for batteries is therefore less meaningful without reference to corresponding energy-to-weight ratio and cell temperature. This relationship is known as [[Peukert's law]].<ref>{{cite journal|last=Peukert|first=W.|title=Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren|journal=Elektrotechnische Zeitschrift|volume=20|year=1897}}</ref>
 
{| class="wikitable sortable"
|-
! [[Battery (electricity)|Battery]] type
! [[Voltage|Volts]]
! [[Temperature|Temp.]]
! Energy-to-weight ratio
! data-sort-type="number"|Power-to-weight ratio
|-
| [[Energizer]] 675 [[Mercury (element)|Mercury]] Free [[Zinc-air battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/675.pdf|title=Product Datasheet - Energizer 675 ZnAir|publisher=[[Energizer Holdings]]|accessdate=2010-09-20|date=2010-02-15}}</ref>
| 1.4V
| 21 °C
| 1,645 kJ/kg to 0.9&nbsp;V <!-- 1.4V over 625 ohn load for 11 days, 12 hours, 47 minutes and 8.57 seconds, ie 620mAh --->
| 1.65 W/kg 2.24&nbsp;mA
|-
| [[GE Transportation|GE]] Durathon™ NaMx A2 [[Uninterruptible power supply|UPS]] [[Molten salt battery]]<ref>{{cite web|url=http://www.personal.psu.edu/klm5709/plugin-GE-NaMx-Batteries-ss.pdf|title=GE Durathon Batteries - NaMx Battery System for Telecom Applications|publisher=[[Pennsylvania State University]]|accessdate=2011-11-24|date=2010-09-17}}</ref>
| 54.2V
| -40&ndash;65°C
| 342 kJ/kg to 37.8&nbsp;V
| 15.8 W/kg C/6 (76&nbsp;A) <!-- 456Ah at 6-hour discharge rate -->
|-
|rowspan="2"| [[Panasonic]] R03 AAA [[Zinc–carbon battery]]<ref>{{cite web|url=http://industrial.panasonic.com/www-data/pdf2/AAE4000/AAE4000CE16.pdf|title=Zinc Carbon Batteries|publisher=[[Panasonic]]|accessdate=February 5, 2010|date=August 2009}}</ref><ref>{{cite web|url=http://products.panasonic-industrial.com/downloads/en/R03.pdf|publisher=[[Panasonic]]|title=Specification for Zinc-Carbon Dry Battery R03(NB)|date=June 25, 1998|author=Matsushita Battery Industrial Co., Ltd.;Matsushita Electric Industrial Co., Ltd.}}</ref>
|rowspan="2"| 1.5&nbsp;V
|rowspan="2"| 20±2&nbsp;°C
| 47 kJ/kg 20&nbsp;mA to 0.9&nbsp;V <!-- 1.5V over 75 ohm load for 4 hours -->
| 3.3 W/kg 20&nbsp;mA
|-
| 88 kJ/kg 150&nbsp;mA to 0.9&nbsp;V <!-- 1.5V over 10 ohm load for 1 hour -->
| 24 W/kg 150&nbsp;mA
|-
|rowspan="2"| [[Eagle-Picher]] SAR-10081 60Ah 22-cell [[Nickel–hydrogen battery]]<ref>{{cite web|url=http://www.die.unipd.it/personale/doc/Benato_Roberto/didattica/corsi/IMPIANTI_ELETTRICI_DI_BORDO_PER_IAS/2_zona_di_transizione/BATTERIE/Batt_SPV.pdf|title=Nickel Hydrogen (NiH<sub>2</sub>) Batteries - Single Pressure Vessel|authorlink=Eagle-Picher|author=EaglePicher Technologies, LLC|publisher=[[University of Padua]]|date=February 6, 2003|accessdate=February 5, 2010}} {{Dead link|date=September 2010|bot=H3llBot}}</ref>
|rowspan="2"| 27.7&nbsp;V
|rowspan="2"| 10&nbsp;°C
| 192 kJ/kg C/2 to 22&nbsp;V <!-- 30A for 2 hours 20 minutes = 70 Ah; 53.4 Wh/kg; mass = 36.3&nbsp;kg -->
| 23 W/kg C/2
|-
| 165 kJ/kg C/1 to 22&nbsp;V <!-- 60A for 1 hour = 60 Ah; 45.8 Wh/kg; mass = 36.3&nbsp;kg; standard discharge -->
| 46 W/kg C/1
|-
| [[ClaytonPower]] 400Ah [[Lithium-ion battery]]<ref>{{cite web|url=http://www.claytonpower.com/products/lithium-ion-battery/|title=Lithium Ion Battery Packs|accessdate=2010-10-05|year=2010|author=Clayton Power|publisher=Clayton Power}}</ref><ref name="claytonpower">{{cite web|url=http://www.claytonpower.com/products/complete-power-systems-24v-230v/|title=Complete Power Systems - 24VDC/230VAC|accessdate=2010-10-05|year=2010|author=Clayton Power|publisher=Clayton Power}}</ref>
| 12V
|
| 617 kJ/kg <!-- mass = 56&nbsp;kg, size = 348 × 469 × 352mm ie vol = 57.5 L-->
| 85.7 W/kg C/1 (175&nbsp;A)
|-
|rowspan="3"| [[Energizer]] 522 Prismatic [[Zinc|Zn]]–[[Manganese dioxide|MnO<sub>2</sub>]] [[Alkaline battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/522.pdf|title=Product Datasheet - Energizer 522 9V|accessdate=February 4, 2010|publisher=[[Energizer Holdings]]}}</ref>
|rowspan="3"| 9&nbsp;V
|rowspan="3"| 21 °C
| 444 kJ/kg 25&nbsp;mA to 4.8&nbsp;V
| 4.9 W/kg 25&nbsp;mA
|-
| 340 kJ/kg 100&nbsp;mA to 4.8&nbsp;V
| 19.7 W/kg 100&nbsp;mA
|-
| 221 kJ/kg 500&nbsp;mA to 4.8&nbsp;V
| 99 W/kg 500&nbsp;mA
|-
|rowspan="3"| [[Panasonic]] HHR900D 9.25Ah [[Nickel–metal hydride battery]]<ref>{{cite web|url=http://www.panasonic.com/industrial/includes/pdf/Panasonic_NiMH_HHR900D.pdf|title=Nickel Metal Hydride Batteries - Individual Data Sheet - HHR900D|publisher=[[Panasonic]]|accessdate=February 5, 2010|date=August 2005}}</ref>
|rowspan="3"| 1.2&nbsp;V
|rowspan="3"| 20&nbsp;°C
|rowspan="3"| 209.65 kJ/kg to 0.7&nbsp;V
| 11.7 W/kg C/5
|-
| 58.2 W/kg C/1
|-
| 116 W/kg 2C
|-
| [[University of Rhode Island|URI]] 1418Ah replaceable anode [[Aluminium–air battery]] model<ref>{{Cite journal
| doi =  10.1016/S0378-7753(02)00370-1
| issn = 0378-7753
| volume = 112
| issue = 1
| pages = 162–173
| author = Yang, Shaohua, and Harold Knickle
| title = Design and analysis of aluminum/air battery system for electric vehicles
| journal = Journal of Power Sources
| year = 2002
}}</ref><ref>{{Cite journal
| doi =  10.1016/j.jpowsour.2003.09.058
| issn = 0378-7753
| volume = 128
| issue = 2
| pages = 331–342
| author = Zhang, Xin, Shao Hua Yang, and Harold Knickle
| title = Novel operation and control of an electric vehicle aluminum/air battery system
| journal = Journal of Power Sources
| year = 2004
}}</ref>
| 244.8&nbsp;V
| 60&nbsp;°C
| 4680 kJ/kg <!-- 1300 Wh/kg -->
| 130.3 W/kg (142&nbsp;A) <!-- peak power output 34.8&nbsp;kW from 136 cells split between two modules combined size 371L and 267&nbsp;kg -->
|-
| rowspan="2"| [[LG Chemical]]/[[Compact Power|CPI]] E2 6Ah LiMn<sub>2</sub>O<sub>4</sub> [[Lithium-ion polymer battery]]<ref>{{cite web|url=http://www.lgchem.com/upload/02_Ko/e2%20cell%20specsheet(6ah).pdf|title=E2 General Information|pages=1|publisher=Lucky Goldstar Chemical Ltd.|accessdate=2010-10-01|date=2005-03-24|author=LG Chem.}}</ref><ref>{{cite web|url=http://www.compactpower.com/Documents/MicrosoftWord-LG_Chem_pressrelease_finalon20080110.pdf|accessdate=2010-10-01|date=2009-01-12|title=Press Release - LG Chem Battery Cells to Power Chevrolet Volt|publisher=Lucky Goldstar Chemical Ltd., CompactPower division|pages=3|author=LG Chem.}}</ref>
| rowspan="2"| 3.8&nbsp;V
| rowspan="2"| 25&nbsp;°C
| 530.1 kJ/kg C/2 to 3.0&nbsp;V
| 71.25 W/kg
|-
| 513 kJ/kg 1C to 3.0&nbsp;V
| 142.5 W/kg
|-
| rowspan="3" | [[Saft Groupe S.A.|Saft]] 45E Fe Super-Phosphate [[Lithium iron phosphate battery]]<ref>{{cite web|url=http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL45EFe.e3741a09-74fd-4df4-8687-12997f445ef5.pdf|title=Rechargeable LiFePO4 lithium-ion battery Super-Phosphate VL 45E Fe Very High Energy cell|accessdate=2010-10-01|date=June 2010|publisher=SAFT Batteries|author=JCI-SAFT}}</ref>
| rowspan="3" | 3.3&nbsp;V
| rowspan="3" | 25 °C
| 581 kJ/kg C to 2.5&nbsp;V
| 161 W/kg
|-
| 560 kJ/kg 1.14&nbsp;C to 2.0&nbsp;V
| 183 W/kg
|-
| 0.73 kJ/kg 2.27&nbsp;C to 1.5&nbsp;V
| 367 W/kg
|-
|rowspan="2"| [[Energizer]] CH35 C 1.8Ah [[Nickel–cadmium battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/CH35.pdf|title=Product Datasheet - Energizer CH35 C|accessdate=February 4, 2010|publisher=[[Energizer Holdings]]}}</ref>
|rowspan="2" | 1.2&nbsp;V
|rowspan="2" | 21&nbsp;°C
| 152 kJ/kg C/10 to 1&nbsp;V
| 4 W/kg C/10
|-
| 147.1 kJ/kg 5C to 1&nbsp;V
| 200 W/kg 5&nbsp;C
|-
|rowspan="3"| Firefly Energy Oasis FF12D1-G31 6-cell 105Ah [[VRLA battery|VRLA]] [[Lead–acid battery|battery]]<ref name="firefly_oasis">{{cite web|url=http://www.fireflyenergy.com/images/stories/pdfs/Group%2031%20Spec%20Sheet%20REV%20-%20110909.pdf|title=Microcell Technology AGM Deep Cycle Group 31 Battery|accessdate=February 4, 2010|year=2009|publisher=FireFly Energy, Inc.}} {{Dead link|date=October 2010|bot=H3llBot}}</ref>
| rowspan="3"| 12&nbsp;V
| 25&nbsp;°C
| 142 kJ/kg C/10 to 7.2&nbsp;V <!-- 10.5A for 10 hours = 105Ah -->
| 4 W/kg C/10
|-
| -1&nbsp;8 °C
| 7 kJ/kg [[Car battery#Terms and ratings|CCA]] to 7.2V <!-- 625A for 30s = 5.2Ah -->
| 234 W/kg [[Car battery#Terms and ratings|CCA]] (625A)
|-
| 0&nbsp;°C
| 9 kJ/kg [[Car battery#Terms and ratings|CA]] to 7.2&nbsp;V <!-- 800A for 30s = 6.7Ah -->
| 300 W/kg [[Car battery#Terms and ratings|CA]] (800&nbsp;A)
|-
|rowspan="4"| [[Panasonic]] CGA103450A 1.95Ah LiCoO<sub>2</sub> [[Lithium-ion battery]]<ref name="panasonicliion">{{cite web|url=http://www.panasonic.com/industrial/battery/oem/images/pdf/Panasonic_LiIon_CGA103450A.pdf|title=Lithium Ion Batteries - Individual Data Sheet - CGA103450A|publisher=[[Panasonic]]|accessdate=February 4, 2010|date=January 2007}} {{Dead link|date=September 2010|bot=H3llBot}}</ref>
|rowspan="4"| 3.7&nbsp;V
| 20&nbsp;°C <!-- 370 mA for 5 hours 16 minutes 13 seconds = 1950 mAh; mass = 39g; standard discharge -->
| 666 kJ/kg C/5.3 to 2.75&nbsp;V
| 35 W/kg C/5.3
|-
| 0&nbsp;°C <!-- 1854 mA for 1 hour = 1854mAh; mass = 39g -->
| 633 kJ/kg C/1 to 2.75&nbsp;V
| 176 W/kg C/1
|-
| 20&nbsp;°C <!-- 1918 mA for 1 hour = 1918 mAh; mass = 39g-->
| 655 kJ/kg C/1 to 2.75&nbsp;V
| 182 W/kg C/1
|-
| 20&nbsp;°C <!-- 3754 mA for 30 minutes = 1877 mAh; mass = 39g -->
| 641 kJ/kg 2C to 2.75&nbsp;V
| 356 W/kg 2C
|-
| Electric Fuel Battery Corp. [[UUV]] 120Ah [[Zinc–air fuel cell]]<ref>{{cite web|url=http://www.efbpower.com/downloads/UAVbro2.pdf|title=Mission Extended - Advanced Zinc-Air Battery Technology|publisher=Electric Fuel Battery Corporation|accessdate=2010-09-15|date=2003-03-30}}</ref>
|
|
| 630 kJ/kg
| 500 W/kg C/1
|-
| rowspan=2 | Sion Power 2.5Ah [[Lithium–sulfur battery|Li–S]] [[Lithium-ion battery]]<ref>{{cite web|url=http://sionpower.com/pdf/articles/LIS%20Spec%20Sheet%2010-3-08.pdf|title=Sion Power - LiS Spec Sheet|publisher=Sion Power|accessdate=11 September 2010|date=October 3, 2008}}</ref>
| rowspan=2 | 2.15&nbsp;V
| rowspan=2 | 25&nbsp;°C
| 1260 kJ/kg <!-- 350 Wh/kg nominal at 2.5Ah/5h = 500mA -->
| 70 W/kg C/5 <!-- 350 Wh/5h per kg -->
|-
| 1209 kJ/kg <!-- mass ~16g, nominal capacity 2.5Ah at nominal voltage 2.15V -->
| 672 W/kg 2C <!-- mass ~16g, C = 2.5A so 2C = 5A -->
|-
| [[Hitachi Maxell|Maxell]] / [[GS Yuasa|Yuasa]] / [[National Institute of Advanced Industrial Science and Technology|AIST]] [[Nickel–metal hydride]] lab prototype<ref>{{cite journal|title=Improvement of Nickel Metal Hydride Battery with Non-foam Nickel Electrode for Hybrid Electric Vehicles Applications|last1=Fukunaga|first1=Hiroshi|last2=Kishimi|first2=Mitsuhiro|last3=Matsumoto|first3=Nobuaki|last4=Tanaka|first4=Toshiki|last5=Kishimoto|first5=Tomonori|last6=Ozaki|first6=Tetsuya|last7=Sakai|first7=Tetsuo|journal=Electrochemistry|volume=75|issue=5|pages=385–393|year=2006|location=Japan|issn=1344-3542|url=http://sciencelinks.jp/j-east/article/200610/000020061006A0350302.php|accessdate=February 4, 2010}}</ref>
|
| 45&nbsp;°C
|
| 980 W/kg
|-
| rowspan=2 | [[Toshiba]] SCiB cell 4.2Ah [[Lithium–titanate battery|Li<sub>2</sub>TiO<sub>3</sub>]] [[Lithium-ion battery]]<ref>{{cite web|url=http://www.scib.jp/en/product/detail.htm|title=Rechargeable Battery SCiB - Description|publisher=[[Toshiba|Toshiba Corporation]]|accessdate=2010-09-11}}</ref><ref>{{cite web|url=http://www.scib.jp/en/product/spec.htm|title=Rechargeable Battery SCiB - Specifications|publisher=[[Toshiba|Toshiba Corporation]]|accessdate=2010-09-11}}</ref>
| rowspan=2 | 2.4&nbsp;V
| rowspan=2 | 25&nbsp;°C
| 242 kJ/kg <!-- mass 150g, 4.2Ah*2.4V -->
| 67.2 W/kg C/1 <!-- mass 150g, C/1 = 4.2A -->
|-
| 218 kJ/kg <!-- mass 150g, 90% of 4.2Ah*2.4V -->
| 4000 W/kg 12C <!-- mass 150g, 5 minutes @ 50A giving "more than 90%" charge; ie 600W -->
|-
|rowspan="2"| Ionix Power Systems LiMn<sub>2</sub>O<sub>4</sub> [[Lithium-ion battery]] lab model<ref>{{cite web|url=http://www.ionixpower.com/lithium_ion_battery.htm|title=Lithium Ion Battery Research|publisher=Ionix Power Systems|accessdate=February 4, 2010}}</ref>
|
| lab
| 270 kJ/kg <!-- 75 Wh/kg -->
| 1700 W/kg
|-
|
| lab
| 29 kJ/kg <!-- 8.1 Wh/kg -->
| 4900 W/kg
|-
|rowspan="5"| [[A123 Systems]] 26650 Cell 2.3Ah [[Lithium iron phosphate battery|LiFePO<sub>4</sub>]] [[Lithium ion battery]]<ref>{{cite web|url=http://www.a123systems.com/a123/products|title=A123Systems Products|publisher=[[A123 Systems]]|accessdate=February 4, 2010}}</ref><ref>{{cite web|url=http://www.a123systems.com/cms/product/pdf/1/_ANR26650M1A.pdf|title=High Power Lithium Ion ANR26650M1A - Datasheet|publisher=[[A123 Systems]]|accessdate=February 4, 2010}} {{Dead link|date=September 2010|bot=H3llBot}}</ref>
|rowspan="5"| 3.3&nbsp;V
| -20&nbsp;°C<!-- 2.3A for 53 minutes = (89%) 2Ah nominal capacity; mass = 70g; nominal continuous discharge -->
| 347 kJ/kg C/1 to 2V
| 108 W/kg C/1
|-
| 0&nbsp;°C<!-- 2.3A for 57 minutes = (95%) 2.2Ah nominal capacity; mass = 70g; nominal continuous discharge -->
| 371 kJ/kg C/1 to 2&nbsp;V
| 108 W/kg C/1
|-
| 25&nbsp;°C<!-- 2.3A for 1 hour = 2.3Ah nominal capacity; mass = 70g; nominal continuous discharge -->
| 390 kJ/kg C/1 to 2&nbsp;V
| 108 W/kg C/1
|-
| 25&nbsp;°C<!-- 70A for 1 minute 58 seconds = 2.3Ah nominal capacity; mass = 70g; max continuous discharge -->
| 390 kJ/kg 27C to 2&nbsp;V
| 3300 W/kg 27C
|-
| 25&nbsp;°C<!-- 120A for short burst 10s = 333mAh burst capacity; mass = 70g; max burst -->
| 57 kJ/kg 32C to 2&nbsp;V
| 5657 W/kg 32C
|-
| rowspan="6"| [[Saft Groupe S.A.|Saft]] VL 6Ah [[Lithium-ion battery]]<ref>{{cite web|url=http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL6A_data_sheet.9ea09188-84ad-4c54-989b-a2206dc28da2.pdf|title=Rechargeable lithium-ion battery VL 6A Very High Power cell|accessdate=2010-10-02|date=June 2009|publisher=SAFT Batteries|author=JCI-Saft}}</ref>
| rowspan="6" | 3.65&nbsp;V
| rowspan="2" | -20&nbsp;°C
| 154 kJ/kg 30C to 2.5&nbsp;V <!-- 5.2 Ah from graph, but voltage drops quickly to around 2.71V, rises to around 3.1 then drops to 2.5V.  Assume 2.8V nominal. -->
| 41.4 W/kg 30C (180&nbsp;A) <!-- Assume 2.71V here because drop is early in profile, rise to around 3.1V then drop to 2.5V -->
|-
| 182 kJ/kg 1C to 2.5&nbsp;V <!-- 5.2 Ah from graph.  Assume 3.3V nominal. -->
| 67.4 W/kg 1C <!-- Assume 3.8V here -->
|-
| rowspan="4" | 25&nbsp;°C
| 232 kJ/kg 1C to 2.5&nbsp;V <!-- 6Ah nominal capacity; mass = 0.34&nbsp;kg; nominal continuous discharge for 6 hours -->
| 64.4 W/kg 1C
|-
| 233 kJ/kg 58.3C to 2.5&nbsp;V <!-- 350A at 3.65V delivering 79.2 kJ/22Wh in 62s; mass = 0.34&nbsp;kg; max continous -->
| 3757 W/kg 58.3C (350A)
|-
| 34 kJ/kg 267C to 2.5&nbsp;V <!-- 1.6kA for short burst 2s = 3.24Wh; mass = 0.34&nbsp;kg; pulse -->
| 17176 W/kg 267C (1.6kA)
|-
| 4.29 kJ/kg 333C to 2.5&nbsp;V <!-- 2kA for short burst 200ms = 0.406Wh; mass = 0.34&nbsp;kg; pulse -->
| 21370 W/kg 333C (2kA)
|}
 
====Electrostatic, electrolytic and electrochemical capacitors====
[[Capacitor]]s store electric charge onto two electrodes separated by an electric field semi-insulating ([[dielectric]]) medium. Electrostatic capacitors feature planar electrodes onto which electric charge accumulates. [[Electrolytic capacitor]]s use a liquid electrolyte as one of the electrodes and the [[Double layer (interfacial)|electric double layer effect]] upon the surface of the dielectric-electrolyte boundary to increase the amount of charge stored per unit volume. [[Electric double-layer capacitor]]s extend both electrodes with a [[Nanopore|nanopourous]] material such as [[activated carbon]] to significantly increase the surface area upon which electric charge can accumulate, reducing the dielectric medium to nanopores and a very thin high [[permittivity]] separator.
 
While capacitors tend not to be as temperature sensitive as batteries, they are significantly capacity constrained and without the strength of chemical bonds suffer from self-discharge. Power-to-weight ratio of capacitors is usually higher than batteries because charge transport units within the cell are smaller (electrons rather than ions), however energy-to-weight ratio is conversely usually lower.
{| class="wikitable"
|-
! [[Capacitor]] type
! [[Capacitance|Capacity]]
! [[Voltage|Volts]]
! [[Temperature|Temp.]]
! Energy-to-weight ratio
! Power-to-weight ratio
|-
| rowspan=2 | ACT Premlis [[Lithium ion capacitor]]<ref>{{cite web|url=http://www.act.jp/eng/premlis/premlis.htm|title=Typical Characteristics of Premlis|publisher=Advanced Capacitor Technologies, Inc.|accessdate=September 9, 2010}}</ref>
| rowspan=2 | 2000&nbsp;[[Farad|F]]
| rowspan=2 | 4.0&nbsp;V
| rowspan=2 | 25&nbsp;°C
| 54 kJ/kg to 2.0&nbsp;V
| 44.4 W/kg @ 5&nbsp;A
|-
| 31 kJ/kg to 2.0&nbsp;V
| 850 W/kg @ 10&nbsp;A
|-
| rowspan=2 | Nesccap [[Electric double-layer capacitor]]<ref>{{cite web|url=http://www.nesscap.com/data_nesscap/spec_sheets/Spec%2009.pdf|title=Nesccap Ultracapacitor Products - EDLC - Prismatic|publisher=Nesscap Co., Ltd.|accessdate=September 10, 2010}}</ref>
| rowspan=2 | 5000&nbsp;[[Farad|F]]
| rowspan=2 | 2.7&nbsp;V
| rowspan=2 | 25&nbsp;°C
| 19.58 kJ/kg to 1.35&nbsp;V
| 5.44 W/kg C/1 (1.875&nbsp;A) <!-- mass 930g, rated energy capacity 0.5*5000*2.7^2 = 5.0625 Wh = 18.225 kJ; rated (C/1) current is then 1.875 A -->
|-
| 5.2 kJ/kg to 1.35&nbsp;V
| 5,200 W/kg<ref>{{cite web|url=http://www.nesscap.com/products_edlc.htm|title=Nesccap Ultracapacitor (EDLC)|publisher=Nesscap Co., Ltd.|accessdate=September 10, 2010}}</ref> @ 2,547A <!-- mass 930g, current pulse for 1 second -->
|-
| rowspan=2 | [[EEStor]] EESU [[barium titanate]] [[supercapacitor]]<ref name="USPTO-7466536">{{Ref patent
| country = US
| number = 7466536
| status = patent
| title = Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU)
| pubdate = 16 December 2008
| gdate = 16 December 2008
| fdate = 13 August 2004
| pridate = 13 August 2004
| invent1 = Weir; Richard Dean
| invent2 = Nelson; Carl Walter
| assign1 = EEStor, Inc}}</ref>
| rowspan=2 |30.693&nbsp;[[Farad|F]]
| rowspan=2 |3500&nbsp;V
| rowspan=2 |85&nbsp;°C
| 1471.98 kJ/kg
| 80.35 W/kg C/5
|-
| 1471.98 kJ/kg
| 8,035 W∕kg 20&nbsp;C
|-
| rowspan=1 | [[General Atomics]] 3330CMX2205 [[Capacitor|High Voltage Capacitor]]<ref>{{cite web |url=http://www.ga-esi.com/EP/capacitors/series-CMX-high-energy.php |title=SERIES CMX - Self-Healing Energy Storage Capacitors |deadurl=no |accessdate=12 August 2012}}</ref>
| rowspan=1 | 20.5&nbsp;[[Farad|mF]]
| rowspan=1 | 3300&nbsp;V
| rowspan=1 | ?&nbsp;°C
| 2.3 kJ/kg
| 6.8 MW/kg @ 100&nbsp;kA
|}
 
====Fuel cell stacks and flow cell batteries====
[[Fuel cell]]s and [[Flow battery|flow cells]], although perhaps using similar chemistry to batteries, have the distinction of not containing the energy storage medium or [[fuel]]. With a continuous flow of fuel and oxidant, available fuel cells and flow cells continue to convert the energy storage medium into electric energy and waste products. Fuel cells distinctly contain a fixed electrolyte whereas flow cells also require a continuous flow of electrolyte. Flow cells typically have the fuel dissolved in the electrolyte.
{| class="wikitable"
|-
! [[Fuel cell]] type
! Dry weight
! Power-to-weight ratio
! Example Use
|-
| Redflow Power+BOS ZB600 10kWh [[Zinc-bromine flow battery|ZBB]]<ref>{{cite web|url=http://www.redflow.com.au/Files/PowerBOSZB600%20-%20Limited%20Warranty.pdf|title=Redflow Power+BOS ZB600 Stand Alone Power System|publisher=Redflow|accessdate=September 11, 2010|date=March 2010}}</ref>
| 900&nbsp;kg
| 5.6 W/kg (9.3 W/kg peak)
| Rural Grid support
|-
| rowspan=2|[[Ceramic Fuel Cells]] BlueGen MG 2.0 [[Cogeneration|CHP]] [[Solid oxide fuel cell|SOFC]]<ref>{{cite web|url=http://www.cfcl.com.au/Assets/Files/BlueGen_Brochure(ENG_GER)_Mar-09.pdf|title=BlueGen Modular Generator - Power + Heat|publisher=Ceramic Fuel Cells Ltd.|accessdate=February 4, 2010}}</ref>
| rowspan=2|200&nbsp;kg
| 10 W/kg <!-- max power = 2kW elec., 1&nbsp;kW heat -->
| rowspan=2|
|-
| 15 W/kg [[Cogeneration|CHP]]
|-
| [[MTU Friedrichshafen]] 240&nbsp;kW [[Molten carbonate fuel cell|MCFC]] HotModule 2006
| 20 [[tonne|t]]
| 12 W/kg
|
|-
| Smart Fuel Cell Jenny 600S 25W [[Direct methanol fuel cell|DMFC]]<ref>{{cite web|url=http://www.sfc.com/en/man-portable-jenny.html|title=The Jenny fuel cell by SFC|publisher=Smart Fuel Cell AG|accessdate=February 4, 2010}}</ref>
| 1.7&nbsp;kg
| 14.7 W/kg
| Portable military electronics
|-
| [[UTC Power]] PureCell 400&nbsp;kW [[Phosphoric acid fuel cell|PAFC]]<ref>{{cite web|url=http://www.utcpower.com/fs/com/Attachments/data_sheets/DS0112_093008.pdf|publisher=[[UTC Power]]|accessdate=February 4, 2010|title=UTC Power - Model 400 PureCell System|year=2008|location=South Windsor, [[Connecticut]], [[USA]]}}</ref>
| 27,216&nbsp;kg
| 14.7 W/kg <!-- 400 kW average lifetime output -->
|
|-
| GEFC 50V50A-VRB [[Vanadium redox battery]]<ref>{{cite web|url=http://www.gefc.com/info/2009112/2009112115605.shtml|title=GEFC 50V50A-VRB Vanadium Redox Battery Stack|publisher=GEFC|year=2010|accessdate=February 5, 2010}}</ref>
| 80&nbsp;kg
| 31.3 W/kg (125 W/kg peak) <!-- 2.5&nbsp;kW rated; 10kW max -->
|
|-
| [[Ballard Power Systems]] Xcellsis HY-205 205&nbsp;kW [[Proton exchange membrane fuel cell|PEMFC]]<ref>{{cite web|url=http://www.fuelcells.org/info/charts/TransTechnical.pdf|title=Transportation Fuel Cells - Technical Info.|accessdate=2010-07-24|publisher=[http://www.fuelcells.org/ Fuel Cells 2000]}}</ref>
| 2,170&nbsp;kg
| 94.5 W/kg
| [[Mercedes-Benz]] [[Mercedes-Benz Citaro|Citaro O530BZ]]{{Cref2|•}}
|-
| [[UTC Power]]/[[NASA]] 12&nbsp;kW [[Alkaline fuel cell|AFC]]<ref>{{cite web|url=http://www.utcpower.com/fs/com/bin/fs_com_Page/0,11491,0115,00.html|title=Space Orbiter|publisher=[[UTC Power]]|accessdate=February 5, 2010|year=2008}}</ref>
| 122&nbsp;kg<!-- 270 pounds -->
| 98 W/kg
| [[Space Shuttle orbiter]]{{Cref2|•}}
|-
| [[Ballard Power Systems]] FCgen-1030 1.2&nbsp;kW [[Cogeneration|CHP]] [[Proton exchange membrane fuel cell|PEMFC]]<ref name="ballardfuelcells">{{cite web|url=http://www.ballard.com/files/pdf/Spec_Sheets/PEM_FC_Product_Portfolio_docmetrics.pdf|title=PEM Fuel Cell Product Portfolio|publisher=[[Ballard Power Systems]]|accessdate=February 4, 2010}}</ref>
| 12&nbsp;kg
| 100 W/kg
| Residential cogeneration
|-
| [[Ballard Power Systems]] FCvelocity-HD6 150&nbsp;kW [[Proton exchange membrane fuel cell|PEMFC]]<ref name="ballardfuelcells"/>
| 400&nbsp;kg
| 375 W/kg
| Bus and heavy duty
|-
| [[Honda]] 2003 43&nbsp;kW FC Stack [[Proton exchange membrane fuel cell|PEMFC]]<ref>{{cite web|url=http://world.honda.com/FuelCell/FCX/FCXPK.pdf|accessdate=February 4, 2010|title=Press Information Honda Fuel Cell Power FCX|date=December 2004|publisher=[[Honda]]}}</ref>{{Cref2|•}}
| 43&nbsp;kg <!-- 43 kW -->
| 1000 W/kg
| [[Honda FCX Clarity]]{{Cref2|•}}
|-
| Lynntech, Inc. [[Proton exchange membrane fuel cell|PEMFC]] lab prototype<ref>{{cite conference|url=http://cat.inist.fr/?aModele=afficheN&cpsidt=2439605|title=Low-cost light weight high power density PEM fuel cell stack|last1=Murphy|first1=O.J.|last2=Cisar|first2=A.|last3=Clarke|first3=E.|booktitle=Proceedings of the Symposium on Batteries and Fuel Cells for Portable Applications and Electric Vehicles|pages=3829–3840|year=1998|location=[[INIST]]}}</ref>
| 347 g <!-- "power output of over 520 W" -->
| 1,500 W/kg
|
|}
{{Cnote2 Begin|liststyle=disc|colwidth=40em}}
{{Cnote2|•|n=0|Full vehicle power-to-weight ratio shown [[Power-to-weight ratio#Vehicles|below]]}}
{{Cnote2 End}}
 
===Photovoltaics===
{| class="wikitable"
|-
! [[Photovoltaic]] Panel type
! Power-to-weight ratio
|-
| [[ThyssenKrupp|Thyssen Solartec]] 128W [[Nanocrystal solar cell|Nanocrystalline]] [[Silicon|Si]] [[Multijunction photovoltaic cell|Triplejunction]] [[Photovoltaics|PV module]]<ref>{{cite web|url=http://www.thyssen-solartec.de/solartec_uk.pdf|title=Thyssen-Solartec - The photovoltaic roof and façade system|accessdate=2010-02-13|publisher=[[ThyssenKrupp|Thyssen Solartec]]}}</ref>
| 6 W/kg
|-
| rowspan=2| [[Suntech Power|Suntech]]/[[UNSW]] HiPerforma PLUTO220-Udm 220W [[Gallium|Ga]]-F22 Polycrystalline [[Silicon|Si]] [[Photovoltaics|PV module]]<ref>{{cite web|url=http://www.suntech-power.com/images/stories/2010_datasheets/EN/suntech_hiperforma_udm_en.pdf|title=Suntech HiPerforma Module PLUTO220-Udm PLUTO215-Udm|accessdate=2010-03-09|publisher=[[Suntech Power]]}}</ref>
| 13.1 W/kg [[Standard temperature and pressure|STP]] <!-- 15.5&nbsp;kg, 22OW STP -->
|-
| 9.64 W/kg nominal <!-- 15.5&nbsp;kg, 148W NOCT -->
|-
| [[Global Solar]] PN16015A 62W [[Copper indium gallium selenide|CIGS]] polycrystalline [[Thin film solar cell|thin film]] [[Photovoltaics|PV module]]<ref>{{cite web|url=http://www.globalsolar.com/index.php?option=com_rubberdoc&view=doc&id=47&format=raw|title=GlobalSolar Product Catalog - Power the Possibilities|accessdate=2010-03-09|publisher=[[Global Solar]]}}</ref>
| 40 W/kg <!-- 55oz, 62W -->
|-
| Able (AEC) PUMA 6&nbsp;kW [[Indium gallium phosphide|GaInP2]]/[[Gallium arsenide|GaAs]]/[[Germanium|Ge]]-on-[[Germanium|Ge]] [[Multijunction photovoltaic cell|Triplejunction]] [[Photovoltaics|PV array]]<ref>{{cite web|url=http://www.aec-able.com/arrays/Resources/PumaSheet.pdf|title=A Heritage-Technology Rigid Substrate Solar Array for Traditional Applications|accessdate=2010-02-13|publisher=Able Engineering Company, Inc.}}</ref>
| 65 W/kg
|-
| Current spacecraft grade
| ~77 W/kg<ref name=rocket>[http://books.google.co.uk/books?id=ja1ROyh4yPYC&pg=RA1-PA180&lpg=RA1-PA180&dq=solar+panels+spacecraft+kg&source=bl&ots=sQKXYoTEg0&sig=wFkCMoPlauHp7-ryD0F3fljOTEA&hl=en&ei=kbM6St6mKdKhjAfx5KijDQ&sa=X&oi=book_result&ct=result&resnum=2 Rocket and spacecraft propulsion By Martin J. L. Turner]</ref> <!-- 1000W, 13kg -->
|-
| ITO/InP on Kapton foil
| 2000 W/kg<ref>http://apl.aip.org/resource/1/applab/v95/i22/p223503_s1</ref> <!-- 1000W, 3 kg -->
|}
 
===Vehicles===
Power-to-weight ratios for vehicles are usually calculated using [[Curb weight]] (for cars) or wet weight (for motorcycles) – in other words, excluding weight of the driver and any cargo. This could be slightly misleading, especially with regard to motorcycles, where the driver might weigh 1/3 to 1/2 as much as the vehicle itself. In the sport of competitive cycling athlete's performance is increasingly being expressed in [[VAM (bicycling)|VAM]]s and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.<ref name="vam">{{cite web|url=http://www.cyclingfitness.net/what-is-vam-and-how-to-calculate-it/|title=What is VAM and How to Calculate it?|accessdate=2010-06-25|date=2009-07-24|publisher=Cycling Fitness}}</ref>
 
====Utility and practical vehicles====
Most vehicles are designed to meet passenger comfort and cargo carrying requirements. Different designs trade off power-to-weight ratio to increase comfort, cargo space, [[Fuel economy in automobiles|fuel economy]], [[Automobile emissions control|emissions control]], [[energy security]] and endurance. [[Automotive aerodynamics|Reduced drag]] and [[Low-rolling resistance tyres|lower rolling resistance]] in a vehicle design can facilitate increased cargo space without increase in the (zero cargo) power-to-weight ratio. This increases the role flexibility of the vehicle. Energy security considerations can trade off power (typically decreased) and weight (typically increased), and therefore power-to-weight ratio, for [[Flexible fuel vehicle|fuel flexibility]] or [[Hybrid vehicle|drive-train hybridisation]]. Some utility and practical vehicle variants such as [[hot hatch]]es and [[SUV|sports-utility vehicles]] reconfigure power (typically increased) and weight to provide the perception of [[sports car]] like performance or for other [[Criticism of sport utility vehicles|psychological benefit]]. Rail locomotives require high mass to maintain adhesive traction on the rails, therefore improving the power-to-weight ratio by reducing mass is not necessarily beneficial. However choice of rail locomotive traction system (i.e. [[Variable-frequency drive|AC VFD]] over DC) can support improved power-to-weight ratio by reducing mass for the same adhesion.
 
=====Notable low ratio, (listed as weight to power)=====
{| class="wikitable"
|-
! Vehicle
! Power
! Weight
! Weight to Power ratio
|-
| [[Benz Patent Motorwagen]] 954&nbsp;cc 1886<ref>{{cite news|url=http://www.latimes.com/news/printedition/highway1/la-hy-125mbzbox21jun21,1,3672562.story|title=1886 Benz Patent Motorwagen|newspaper=[[Los Angeles Times]]|publisher=[[Tribune Company]]|date=2006-06-01}}</ref>
| 560&nbsp;W / 0.75&nbsp;bhp
| 265&nbsp;kg / 584&nbsp;lb
| 2.1 W/kg / 779&nbsp;lb/hp
|-
| [[Stephenson's Rocket]] [[0-2-2]] [[steam locomotive]] with [[Tender (rail)|tender]] 1829<ref>{{cite encyclopedia|url=http://www.britannica.com/bps/additionalcontent/18/28339806/Robert-Stephenson-and-19thCentury-Transportation-Technology|title=Robert Stephenson and 19th-Century Transportation Technology|encyclopedia=[[Encyclopædia Britannica]]|accessdate=2010-01-08|editor-first=Dennis|editor-last=Karwatka}}</ref>
| 15&nbsp;kW / 20&nbsp;bhp
| 4,320&nbsp;kg / 9524&nbsp;lb
| 3.5 W/kg / 476&nbsp;lb/hp
|-
| [[Chicago, Burlington and Quincy Railroad|CBQ]] [[Pioneer Zephyr|Zephyr]] [[streamliner]] [[diesel locomotive]] with [[Railroad car|railcars]] 1934<ref>{{cite journal|url=http://asmcommunity.asminternational.org/vgn-ext-templating/views/ASM/OpenDocument.jsp?vcmid=b6b1a538b5c81210VgnVCM100000621e010aRCRD|accessdate=2010-01-12|title=The Burlington Zephyr Stainless Steel Train|first=Harold M.|last=Cobb|date=June 2006|journal=Advanced Materials & Processes|pages=24–28}}</ref>
| 492&nbsp;kW / 660&nbsp;bhp
| 94&nbsp;[[tonne|t]] / 208,000&nbsp;lb
| 5.21&nbsp;W/kg / 315&nbsp;lb/hp
|-
| [[Alberto Contador]]'s [[Alberto Contador#2009 Verbier climb|Verbier climb]] [[2009 Tour de France]] on [[Specialized Bicycle Components|Specialized]] bike<ref name="vam"/>
| 420&nbsp;W / 0.56&nbsp;bhp
| 62&nbsp;kg / 137&nbsp;lb
| 6.7&nbsp;W/kg / 245&nbsp;lb/hp
|-
| [[Force Motors]] Minidor Diesel 499&nbsp;cc [[auto rickshaw]]<ref>{{citation|url=http://www.forcemotors.com/media/downloads/DIESEL3SEATER.pdf|title=Minidor Diesel 3-seater|accessdate=2010-01-08|publisher=[[Force Motors]]}} {{Dead link|date=September 2010|bot=H3llBot}}</ref><ref>{{cite web|url=http://balajiforce.com/threeWheelers.aspx?id=2|publisher=Balaji Force|accessdate=2010-01-08|title=Balaji Force Minidor Autorickshaw}}</ref>
| 6.6&nbsp;kW / 8.8&nbsp;bhp
| 700&nbsp;kg / 1543&nbsp;lb
| 9 W/kg / 175&nbsp;lb/hp
|-
| [[PRR Q2]] [[4-4-6-4]] [[steam locomotive]] with [[Tender (rail)|tender]] 1944
| 5,956&nbsp;kW / 7,987&nbsp;bhp
| 475.9&nbsp;[[tonne|t]] / 1,049,100&nbsp;lb
| 12.5 W/kg / 131&nbsp;lb/hp
|-
| [[Mercedes-Benz]] [[Mercedes-Benz Citaro|Citaro O530BZ]] [[Hydrogen|H<sub>2</sub>]] [[fuel cell bus]] 2002<ref>{{cite journal|last1=Ally|first1=Jamie|last2=Pryor|first2=Trevor|title=Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems|journal=Journal of Power Sources|volume=170|pages=401–411|issue=2|publisher=[[Elsevier]]|location=Research Institute for Sustainable Energy, [[Murdoch University]], [[Perth, Western Australia]], [[Australia]]|date=2007-04-25|accessdate=2010-07-24|doi=10.1016/j.jpowsour.2007.04.036|issn=0378-7753}}</ref>
| 205&nbsp;kW / 275&nbsp;bhp
| 14,500&nbsp;kg / 32,000&nbsp;lb
| 14.1&nbsp;W/kg / 116&nbsp;lb/hp
|-
| [[TGV]] [[British Rail Class 373|BR Class 373]] [[High-speed rail|high-speed]] [[Eurostar]] Trainset 1993
| 12,240&nbsp;kW / 16,414&nbsp;bhp
| 816&nbsp;[[tonne|t]] / 1,798,972&nbsp;lb
| 15 W/kg / 110&nbsp;lb/hp
|-
| [[General Dynamics]] [[M1 Abrams]] [[Main battle tank]] 1980<ref>{{cite web|url=http://www.army.mil/factfiles/equipment/tracked/abrams.html|title=Abrams Tank Fact File for the United States Army|accessdate=2011-02-19|publisher=US Army}}</ref>
| 1,119&nbsp;kW / 1500&nbsp;bhp
| 55.7&nbsp;[[tonne|t]] / 122,800&nbsp;lb
| 20.1 W/kg / 81.9&nbsp;lb/hp
|-
| [[British Rail Class 43 (HST)|BR Class 43]] [[High-speed rail|high-speed]] [[diesel electric locomotive]] 1975
| 1,678&nbsp;kW / 2,250&nbsp;bhp
| 70.25&nbsp;[[tonne|t]] / 154,875&nbsp;lb
| 23.9 W/kg / 69&nbsp;lb/hp
|-
| [[GE Transportation Systems|GE]] [[GE AC6000CW|AC6000CW]] [[diesel electric locomotive]] 1996
| 4,660&nbsp;kW / 6,250&nbsp;bhp
| 192&nbsp;[[tonne|t]] / 423,000&nbsp;lb
| 24.3 W/kg / 68&nbsp;lb/hp
|-
| [[British Rail Class 55|BR Class 55]] [[Napier Deltic]] [[diesel electric locomotive]] 1961
| 2,460&nbsp;kW / 3,300&nbsp;bhp
| 101&nbsp;[[tonne|t]] / 222,667&nbsp;lb
| 24.4 W/kg / 68&nbsp;lb/hp
|-
| [[International CXT]] 2004<ref>{{cite web|first=Jay|last=Leno|url=http://www.popularmechanics.com/automotive/jay_leno_garage/1368287.html|title=A Tonka Toy comes to life--really big life.|date=March 2005|publisher=Popular Mechanics}}</ref>
| 164&nbsp;kW / 220&nbsp;bhp
| 6,577&nbsp;kg / 14500&nbsp;lb
| 25 W/kg / 66&nbsp;lb/hp
|-
| [[Ford Model T]] 2.9&nbsp;L [[Flexible fuel vehicle|flex-fuel]] 1908
| 15&nbsp;kW / 20&nbsp;bhp
| 540&nbsp;kg / 1,200&nbsp;lb
| 28 W/kg / 60&nbsp;lb/hp
|-
| [[Th!nk City|TH!NK City]] 2008<ref>{{cite web|url=http://www.thinkev.com/The-THINK-City/Specifications/Technical-data/|title=TH!NK City - Specifications - Technical Data|accessdate=2010-09-13|publisher=[[Th!nk|TH!NK Global]]}}</ref>
| 30&nbsp;kW / 40&nbsp;bhp
| 1038&nbsp;kg / 2,288&nbsp;lb
| 28.9 W/kg / 56.9&nbsp;lb/hp
|-
| [[Messerschmitt KR200]] Kabinenroller 191&nbsp;cc 1955
| 6&nbsp;kW / 8.2&nbsp;bhp
| 230&nbsp;kg / 506&nbsp;lb
| 30 W/kg / 50&nbsp;lb/hp
|-
| [[Wright Flyer]] 1903
| 9&nbsp;kW / 12&nbsp;bhp
| 274&nbsp;kg / 605&nbsp;lb
| 33 W/kg / 50&nbsp;lb/hp
|-
| [[Tata Nano]] 624 cc 2008
| 26&nbsp;kW / 35&nbsp;bhp
| 635&nbsp;kg / 1,400&nbsp;lb
| 41.0 W/kg / 40&nbsp;lb/hp
|-
| [[Bombardier Transportation|Bombardier]] [[JetTrain]] [[High-speed rail|high-speed]] [[gas turbine-electric locomotive]] 2000<ref>{{cite web|url=http://canadair.ca/en/1_0/1_10/1_10_2_1.jsp?menu=1_0|title=Bombardier Transportation - Rail Vehicles - Intercity/Highspeed - JetTrain|accessdate=2010-07-24|date=June 2000}}</ref>
| 3,750&nbsp;kW / 5,029&nbsp;bhp
| 90,750&nbsp;kg / 200,000&nbsp;lb
| 41.2 W/kg / 39.8&nbsp;lb/hp
|-
| [[Suzuki MightyBoy]] 543&nbsp;cc 1988
| 23&nbsp;kW / 31&nbsp;bhp
| 550&nbsp;kg / 1,213&nbsp;lb
| 42 W/kg / 39&nbsp;lb/hp
|-
| [[Mitsubishi i MiEV]] 2009<ref>{{cite web|url=http://www.mitsubishi-motors.com/special/ev/whatis/index.html|title=About i MiEV|accessdate=2010-06-03|date=July 2008|publisher=Mitsubishi Motors}}</ref>
| 47&nbsp;kW / 63&nbsp;bhp
| 1,080&nbsp;kg / 2,381&nbsp;lb
| 43.5 W/kg / 37.8&nbsp;lb/hp
|-
| [[Holden FJ]] 2,160&nbsp;cc 1953<ref>{{cite web|url=http://www.uniquecarsandparts.com.au/holden_FJ_technical_specifications.htm|title=Holden FJ Technical Specifications|accessdate=2010-01-08|publisher=Unique Cars and Parts}}</ref>
| 44.7&nbsp;kW / 60&nbsp;bhp
| 1,021&nbsp;kg / 2,250&nbsp;lb
| 43.8 W/kg / 37.5&nbsp;lb/hp
|-
| [[Chevrolet Kodiak]]/[[GMC Topkick]] LYE 6.6&nbsp;L 2005<ref name="gmduramax"/><ref>{{cite web|url=http://www.caranddriver.com/reviews/car/05q4/gmc_topkick_c4500_by_monroe_truck_equipment-mini_test_road_test/specs_page_2|title=GMC TopKick C4500 by Monroe Truck Equipment - Specs; Hummer This|publisher=Car And Driver|accessdate=2010-01-15|date=November 2005|first=Tony|last=Quiroga}}</ref>
| 246&nbsp;kW / 330&nbsp;bhp
| 5126&nbsp;kg / 11,300&nbsp;lb
| 48 W/kg / 34.2&nbsp;lb/hp
|-
| [[United States Department of Energy|DOE]]/[[NASA]]/0032-28 [[Chevrolet Celebrity]] 502&nbsp;cc [[Stirling engine|ASE]] Mod II 1985<ref name="nasa_ase"/>
| 62.3&nbsp;kW / 83.5&nbsp;bhp
| 1,297&nbsp;kg / 2,860&nbsp;lb
| 48.0 W/kg / 34.3&nbsp;lb/hp
|-
| [[Suzuki Alto]] 796&nbsp;cc 2000
| 35&nbsp;kW / 46&nbsp;bhp
| 720&nbsp;kg / 1,587&nbsp;lb
| 49 W/kg / 35&nbsp;lb/hp
|-
| [[Land Rover Defender]] 2.4&nbsp;L 1990<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=11729&modelId=11730&editionId=11781#tabsection3|title=Land Rover Defender 4×4 110 2.4D Hard Top 5dr|accessdate=2010-01-08|publisher=[[What Car?]]}}</ref>
| 90&nbsp;kW / 121&nbsp;bhp
| 1,837&nbsp;kg / 4,050&nbsp;lb
| 49 W/kg / 33&nbsp;lb/hp
|}
 
=====Common power, (Listed as weight to power)=====
{| class="wikitable"
|-
! Vehicle
! Power
! Weight
! Weight-to-Power ratio
|-
| [[Toyota Prius]] 1.8&nbsp;L 2010 (petrol only)<ref name="prius">{{cite web|publisher=[[Toyota]]|title=Toyota Prius 2010 Performance &amp; Specifications|url=http://www.toyota.com/prius-hybrid/specs.html|accessdate=2010-01-08}}</ref>
| 73&nbsp;kW / 98&nbsp;bhp
| 1,380&nbsp;kg / 3,042&nbsp;lb
| 53 W/kg / 31&nbsp;lb/hp
|-
| [[Bajaj Platina]] [[Naked bike|Naked]] 100&nbsp;cc 2006<ref>{{cite web|url=http://www.autoindia.com/VehicleStyles/bike-car-details1086.html|accessdate=2010-01-08|publisher=AutoIndia|title=Details of Bajaj Platina 100 cc}} {{Dead link|date=September 2010|bot=H3llBot}}</ref>
| 6&nbsp;kW / 8&nbsp;bhp
| 113&nbsp;kg / 249&nbsp;lb
| 53 W/kg / 31&nbsp;lb/hp
|-
| [[Subaru R2]] type S 2003<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=117601|title=2003 Subaru R2 S Technical specifications|publisher=Car Folio|accessdate=2010-01-08}}</ref>
| 47&nbsp;kW / 63&nbsp;bhp
| 830&nbsp;kg / 1,830&nbsp;lb
| 57 W/kg / 29&nbsp;lb/hp
|-
| [[Ford Fiesta]] ECOnetic 1.6&nbsp;L TDCi 5dr 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=1&modelId=1244&editionId=1507#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Ford Fiesta Hatchback 1.6 TDCi Econetic 5dr}}</ref>
| 66&nbsp;kW / 89&nbsp;bhp
| 1,155&nbsp;kg / 2,546&nbsp;lb
| 57 W/kg / 29&nbsp;lb/hp
|-
| [[Volvo C30]] 1.6D DRIVe [[Start-stop system|S/S]] 3dr Hatch 2010<ref>{{cite web|url=http://www.volvocars.com/intl/All-Cars/Volvo-C30/Pages/default.aspx|accessdate=2010-03-16|publisher=[[Volvo]]|title=Volvo C30 - a Four-Seat Sports Coupé with High Performance}}</ref>
| 80&nbsp;kW / 108&nbsp;bhp
| 1,347&nbsp;kg / 2,970&nbsp;lb
| 59.4 W/kg / 27.5&nbsp;lb/hp
|-
| [[Ford Focus]] ECOnetic 1.6&nbsp;L TDCi 5dr Hatch 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=1&modelId=165&editionId=552#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Ford Focus Hatchback 1.6 TDCi 110 DPF ECOnetic 5dr}}</ref>
| 81&nbsp;kW / 108&nbsp;bhp
| 1,357&nbsp;kg / 2,992&nbsp;lb
| 59.7 W/kg / 27&nbsp;lb/hp
|-
| [[Ford Focus]] 1.8&nbsp;L Zetec S TDCi 5dr Hatch 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=1&modelId=165&editionId=619#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Ford Focus Hatchback 1.8 TDCi Zetec S 5dr}}</ref>
| 84&nbsp;kW / 113&nbsp;bhp
| 1,370&nbsp;kg / 3,020&nbsp;lb
| 61 W/kg / 27&nbsp;lb/hp
|-
| [[Honda FCX Clarity]] 4&nbsp;kg Hydrogen 2008<ref>{{cite web|url=http://corporate.honda.com/environment/fuel_cells.aspx?id=fuel_cells_fcx|publisher=[[Honda]]|accessdate=2010-01-08|title=The History of the Honda FCX Clarity, Fuel Cell Electric Vehicle FCEV}}</ref>
| 100&nbsp;kW / 134&nbsp;bhp
| 1,600&nbsp;kg / 3,528&nbsp;lb
| 63 W/kg / 26&nbsp;lb/hp
|-
| [[Hummer H1]] 6.6&nbsp;L V8 2006<ref>{{cite web|url=http://www.internetautoguide.com/car-specifications/09-int/2006/hummer/h1/index.html|accessdate=2010-01-08|publisher=InternetAutoguide.com|title=2006 HUMMER H1 specifications}}</ref>
| 224&nbsp;kW / 300&nbsp;bhp
| 3,559&nbsp;kg / 7,847&nbsp;lb
| 63 W/kg / 26&nbsp;lb/hp
|-
| [[Audi A2]] 1.4&nbsp;L TDI 90 type S 2003<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=117601|title=2003 Audi A2 1.4 TDi Technical specifications|publisher=Car Folio|accessdate=2010-01-08}}</ref>
| 66&nbsp;kW / 89&nbsp;bhp
| 1,030&nbsp;kg / 2,270&nbsp;lb
| 64 W/kg / 25&nbsp;lb/hp
|-
| [[Opel]]/[[Vauxhall]]/[[Holden]]/[[Chevrolet]] [[Opel Astra|Astra]] 1.7&nbsp;L CTDi 125 2010<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=2080&modelId=2199&editionId=31557#tabsection3|accessdate=2010-07-09|publisher=[[What Car?]]|title=Vauxhall Astra Hatchback 1.7 CDTi 125 Elite 5dr}}</ref>
| 92&nbsp;kW / 123&nbsp;bhp
| 1,393&nbsp;kg / 3,071&nbsp;lb
| 66 W∕kg / 24.9&nbsp;lb∕hp
|-
| [[Mini (BMW)|Mini (new)]] Cooper 1.6D 2007<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=29021&modelId=29090&editionId=29126#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Mini Cooper Hatchback 1.6D 3dr}}</ref>
| 81&nbsp;kW / 108&nbsp;bhp
| 1,185&nbsp;kg / 2,612&nbsp;lb
| 68 W/kg / 24&nbsp;lb/hp
|-
| [[Toyota Prius]] 1.8&nbsp;L 2010 (electric boost)<ref name="prius"/>
| 100&nbsp;kW / 134&nbsp;bhp
| 1,380&nbsp;kg / 3,042&nbsp;lb
| 72 W/kg / 23&nbsp;lb/hp
|-
| [[Ford Focus]] 2.0&nbsp;L Zetec S TDCi 5dr Hatch 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=1&modelId=165&editionId=553#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Ford Focus Hatchback 1.8 TDCi Style 5dr}}</ref>
| 100&nbsp;kW / 134&nbsp;bhp
| 1,370&nbsp;kg / 3,020&nbsp;lb
| 73 W/kg / 23&nbsp;lb/hp
|-
| [[General Motors Corporation|General Motors]] [[General Motors EV1|EV1]] [[electric car]] Gen II 1998<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=109186|title=1998 GM EV1 GenII Lead-Acid 2 door fixed-head coupe technical specifications|accessdate=2012-08-09|publisher=Car Folio}}</ref>
| 102.2&nbsp;kW / 137&nbsp;bhp
| 1,400&nbsp;kg / 3,086&nbsp;lb
| 73 W/kg / 23&nbsp;lb/hp
|-
| [[Toyota Venza]] I4 2.7&nbsp;L [[Front-wheel drive|FWD]] 2009<ref name="toyotavenza">{{cite web|url=http://www.toyota.com/venza/specs.html|accessdate=2010-11-06|title=Toyota Venza Performance & Specs|publisher=Toyota Motor North America|year=2010}}</ref>
| 136&nbsp;kW / 182&nbsp;bhp
| 1,706&nbsp;kg / 3,760&nbsp;lb
| 80 W/kg / 20.7&nbsp;lb/hp
|-
| [[Ford Focus]] 2.0&nbsp;L Zetec S 5dr Hatch 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=1&modelId=165&editionId=617#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Ford Focus Hatchback 2.0 Zetec S 5dr}}</ref>
| 107&nbsp;kW / 143&nbsp;bhp
| 1,327&nbsp;kg / 2,926&nbsp;lb
| 81 W/kg / 20&nbsp;lb/hp
|-
| [[Fiat Grande Punto]] 1.6&nbsp;L Multijet 120 2005<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=9434&modelId=10026&editionId=31419&makeId1=&modelId1=&editionId1=&makeId2=&modelId2=&editionId2=#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Fiat Grande Punto Hatchback 1.6 Multijet 120 Sporting 5dr}}</ref>
| 88&nbsp;kW / 118&nbsp;bhp
| 1,075&nbsp;kg / 2,370&nbsp;lb
| 82 W/kg / 20&nbsp;lb/hp
|-
| [[Mini|Mini (classic)]] 1275GT 1969
| 57&nbsp;kW / 76&nbsp;bhp
| 686&nbsp;kg / 1,512&nbsp;lb
| 83 W/kg / 20&nbsp;lb/hp
|-
| [[Opel]]/[[Vauxhall]]/[[Holden]]/[[Chevrolet]] [[Opel Astra|Astra]] 2.0&nbsp;L CTDi 160 2010<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=2080&modelId=2199&editionId=31559#tabsection3|accessdate=2010-07-09|publisher=[[What Car?]]|title=Vauxhall Astra Hatchback 2.0 CDTi 160 Elite 5dr}}</ref>
| 118&nbsp;kW / 158&nbsp;bhp
| 1,393&nbsp;kg / 3,071&nbsp;lb
| 85 W∕kg / 19.4&nbsp;lb∕hp
|-
| [[Ford Focus (North America)|Ford Focus]] 2.0 auto 2007<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=176847|accessdate=2010-01-08|title=2007 Ford Focus 2.0 Automatic (US) Technical specifications}}</ref>
| 104.4&nbsp;kW / 140&nbsp;bhp
| 1,198&nbsp;kg / 2,641&nbsp;lb
| 87.1 W/kg / 19&nbsp;lb/hp
|-
| [[Subaru Legacy|Subaru Legacy/Liberty]] 2.0R 2005<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=131901|title=2005 Subaru Legacy 2.0R Technical specifications|accessdate=2010-01-08}}</ref>
| 121&nbsp;kW / 162&nbsp;bhp
| 1,370&nbsp;kg / 3,020&nbsp;lb
| 88 W/kg / 19&nbsp;lb/hp
|-
| [[Subaru Outback]] 2.5i 2008<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=178321|title=2008 Subaru Legacy Outback 2.5i Technical specifications|accessdate=2010-01-08}}</ref>
| 130.5&nbsp;kW / 175&nbsp;bhp
| 1,430&nbsp;kg / 3,153&nbsp;lb
| 91 W/kg / 18&nbsp;lb/hp
|-
| [[Smart Fortwo]] 1.0&nbsp;L Brabus 2009<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=28845&modelId=28846&editionId=28914&makeId1=&modelId1=&editionId1=&makeId2=&modelId2=&editionId2=#tabsection3|accessdate=2010-01-08|publisher=[[What Car?]]|title=Smart Fortwo Cabriolet 1.0 97 Brabus Xclusive (07-09) 2dr}}</ref>
| 72&nbsp;kW / 97&nbsp;bhp
| 780&nbsp;kg / 1,720&nbsp;lb
| 92 W/kg / 18&nbsp;lb/hp
|-
| [[Toyota Venza]] V6 3.5&nbsp;L [[All wheel drive|AWD]] 2009<ref name="toyotavenza"/>
| 200&nbsp;kW / 268&nbsp;bhp
| 1,835&nbsp;kg / 4,045&nbsp;lb
| 109 W/kg / 15&nbsp;lb/hp
|-
| [[Toyota Venza]] I4 2.7&nbsp;L [[Front-wheel drive|FWD]] 2009<ref name="toyotavenza"/> with [[Lotus Engineering|Lotus]] mass reduction<ref>{{cite web|url=http://www.theicct.org/pubs/Mass_reduction_final_2010.pdf|publisher=International Council on Clean Transportation|title=An Assessment of Mass Reduction Opportunities for a 2017–2020 Model Year Vehicle Program}}</ref>
| 136&nbsp;kW / 182&nbsp;bhp
| 1,210&nbsp;kg / 2,667&nbsp;lb
| 112.2 W/kg / 14.7&nbsp;lb/hp
|-
| [[Toyota Hilux]] V6 [[DOHC]] 4&nbsp;L 4×2 Single Cab [[Pickup truck|Pickup]] [[Coupe utility|ute]] 2009<ref>{{cite web|url=http://www.toyota.com.au/TWR/content/static/74843.pdf|accessdate=2010-01-21|title=Toyota HiLux 4×2 Utes 2009|publisher=[[Toyota]]}}</ref>
| 175&nbsp;kW / 235&nbsp;bhp
| 1,555&nbsp;kg / 3,428&nbsp;lb
| 112.5 W/kg / 14.6&nbsp;lb/hp
|-
| [[Toyota Venza]] V6 3.5&nbsp;L [[Front-wheel drive|FWD]] 2009<ref name="toyotavenza"/>
| 200&nbsp;kW / 268&nbsp;bhp
| 1,755&nbsp;kg / 3,870&nbsp;lb
| 114 W/kg / 14.4&nbsp;lb/hp
|}
 
=====Performance luxury, roadsters and mild sports, (Listed as weight to power)=====
Increased engine performance is a consideration, but also other features associated with [[luxury vehicle]]s. [[Longitudinal engine]]s are common. Bodies vary from [[hot hatch]]es, [[Sedan (automobile)|sedans (saloons)]], [[coupé]]s, [[Convertible (car)|convertibles]] and [[Roadster (automobile)|roadsters]]. Mid-range [[Dual-sport motorcycle|dual-sport]] and [[Cruiser (motorcycle)|cruiser]] motorcycles tend to have similar power-to-weight ratios.
{| class="wikitable"
|-
! Vehicle
! Power
! Weight
! Weight-to-power ratio
|-
| [[Honda Accord]] [[sedan (automobile)|sedan]] V6 2011
| 202&nbsp;kW / 271&nbsp;bhp
| 1630&nbsp;kg / 3593&nbsp;lb
| 124 W/kg / 13.26&nbsp;lb/hp
|-
|-
| [[Mini (BMW)|Mini (new)]] Cooper 1.6T S JCW 2008<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=29021&modelId=29090&editionId=29144#tabsection3|title=Mini Cooper Hatchback 1.6T S John Cooper Works 3dr|accessdate=2010-01-08|publisher=[[What Car?]]}}</ref>
| 155&nbsp;kW / 208&nbsp;bhp
| 1205&nbsp;kg / 2657&nbsp;lb
| 129 W/kg / 13&nbsp;lb/hp
|-
| [[Mazda RX-8]] 1.3&nbsp;L [[Wankel engine|Wankel]] 2003
| 173&nbsp;kW / 232&nbsp;bhp
| 1309&nbsp;kg / 2888&nbsp;lb
| 141 W/kg / 12&nbsp;lb/hp
|-
| [[Holden WM Caprice|Holden Statesman/Caprice / Buick Park Avenue / Daewoo Veritas]] 6&nbsp;L V8 2007<ref>{{cite web|url=http://www.topspeed.com/cars/holden/2007-holden-wm-caprice-ar13106.html|publisher=Topspeed|accessdate=2010-01-08|title=2007 Holden WM Caprice}}</ref>
| 270&nbsp;kW / 362&nbsp;bhp
| 1891&nbsp;kg / 4170&nbsp;lb
| 143 W/kg / 12&nbsp;lb/hp
|-
| [[Kawasaki KLR650]] Gasoline [[Dual-sport motorcycle|DualSport]] 650&nbsp;cc
| 26&nbsp;kW / 35&nbsp;bhp
| 182&nbsp;kg / 401&nbsp;lb
| 143 W/kg / 11&nbsp;lb/hp
|-
| [[NATO]] [[Diesel motorcycle#Hayes Diversified Technologies M1030M1|HTC M1030M1]] Diesel/[[JP-8|Jet fuel]] [[Dual-sport motorcycle|DualSport]] 670&nbsp;cc<ref>{{citation|url=http://www.dieselmotorcycles.com/PDF/M1030M1_JP8_Diesel_Military_US.pdf|title=M1030M1 JP8/Diesel Military Motorcycle|publisher=Hayes Diversified Technologies|accessdate=2009-02-28}}</ref>
| 26&nbsp;kW / 35&nbsp;bhp
| 182&nbsp;kg / 401&nbsp;lb
| 143 W/kg / 11&nbsp;lb/hp
|-
| [[Softail#Harley-Davidson Softail|Harley-Davidson FLSTF Softail Fat Boy]] [[Cruiser (motorcycle)|Cruiser]] 1,584&nbsp;cc 2009<ref>{{cite web|url=http://www.topspeed.com/motorcycles/motorcycle-reviews/harley-davidson/2009-harley-davidson-flstf-softail-fat-boy-ar73839.html|title=2009 Harley-Davidson FLSTF Softail Fat Boy Preview|publisher=Topspeed|accessdate=2010-01-26}}</ref>
| 47&nbsp;kW / 63&nbsp;bhp
| 324&nbsp;kg / 714&nbsp;lb
| 145&nbsp;W/kg / 11.3&nbsp;lb/hp
|-
| [[BMW 7 Series]] 760Li 6&nbsp;L V12 2006<ref>{{cite press release|url=http://www.bmwblog.com/docs/BMW_760i_760Li.pdf|publisher=[[BMW]]|accessdate=2010-01-08|date=March 2009|title=The new BMW 760i; The new BMW 760Li; Contents.}}</ref>
| 327&nbsp;kW / 439&nbsp;bhp
| 2250&nbsp;kg / 4960&nbsp;lb
| 145 W/kg / 11&nbsp;lb/hp
|-
| [[Subaru Impreza WRX STi]] 2.0&nbsp;L 2008<ref>{{cite web|first=Dan|last=Edmunds|url=http://www.edmunds.com/insideline/do/Drives/FullTests/articleId=123768|title=Full Test: 2008 Subaru Impreza WRX STI|accessdate=2010-01-08|publisher=[[Edmunds.com|edmunds InsideLine]]}}</ref>
| 227&nbsp;kW / 304&nbsp;bhp
| 1530&nbsp;kg / 3373&nbsp;lb
| 148 W/kg / 11&nbsp;lb/hp
|-
| [[Honda S2000]] [[Roadster (automobile)|roadster]] 1999{{Citation needed|date=July 2011}}
| 183.88&nbsp;kW / 240&nbsp;bhp
| 1250&nbsp;kg / 2723&nbsp;lb
| 150 W/kg / 11&nbsp;lb/hp
|-
| [[HSV Clubsport|GMH HSV Clubsport / GMV VXR8 / GMC CSV CR8 / Pontiac G8]] 6&nbsp;L V8 2006<ref>{{cite web|url=http://www.whatcar.com/Review/EditionCompare?newOrUsed=New&makeId=2080&modelId=4102&editionId=4110#tabsection3|title=Vauxhall VXR8 Saloon 6.2 V8 Bathurst 4dr|accessdate=2010-01-08|publisher=[[What Car?]]}}</ref>
| 317&nbsp;kW / 425&nbsp;bhp
| 1831&nbsp;kg / 4037&nbsp;lb
| 173 W/kg / 9.5&nbsp;lb/hp
|-
| [[Tesla Roadster]] 2011<ref>{{cite web|url=http://www.teslamotors.com/roadster/specs#specs-2|title=Roadster Features and Specifications|publisher=[[Tesla Motors|Tesla Motors, Inc.]].|accessdate=2011-07-31}}</ref>
| 215&nbsp;kW / 288&nbsp;bhp
| 1235&nbsp;kg / 2723&nbsp;lb
| 174 W/kg / 9.5&nbsp;lb/hp
|}
 
====Sports vehicles and aircraft, (Listed as weight to power) ====
 
Power-to-weight ratio is an important vehicle characteristic that affects the acceleration and handling - and therefore the driving enjoyment - of any sports vehicle.
Aircraft also depend on high power-to-weight ratio to achieve sufficient [[Lift (force)|lift]].
 
{| class="wikitable"
|-
! Vehicle
! Power
! Weight
! Weight-to-power ratio
|-
| [[Lotus Elise]] SC 2008
| 163&nbsp;kW / 218&nbsp;bhp
| 910&nbsp;kg / 2006&nbsp;lb
| 179 W/kg / 9&nbsp;lb/hp
|-
| [[Ferrari Testarossa]] 1984
| 291&nbsp;kW / 390&nbsp;bhp
| 1506&nbsp;kg / 3320&nbsp;lb
| 193 W/kg / 9&nbsp;lb/hp
|-
| [[Artega GT]]<ref>{{cite web|url=http://www.motorauthority.com/news/coupes/artega-launches-gt-with-special-edition-model/|title=Artega GT now on sale|publisher=Motor Authority|accessdate=2010-01-08|first=Viknesh|last=Vijayenthiran}}</ref>
| 220&nbsp;kW / 300&nbsp;bhp
| 1100&nbsp;kg / 2425&nbsp;lb
| 200 W/kg / 8&nbsp;lb/hp
|-
| [[Lotus Exige]] GT3 2006<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=166628|title=2006 Lotus Exige GT3 Technical specifications|accessdate=2010-01-08|publisher=Car Folio}}</ref>
| 202.1&nbsp;kW / 271&nbsp;bhp
| 980&nbsp;kg / 2160&nbsp;lb
| 206 W/kg / 8&nbsp;lb/hp
|-
| [[Chevrolet Corvette C6]]<ref name="corvette_c6">{{cite web|url=http://autos.msn.com/research/vip/spec_Exterior.aspx?year=2008&make=Chevrolet&model=Corvette&trimid=-1|publisher=MSN Autos|title=2008 Chevrolet Corvette|accessdate=2010-01-08}}</ref>
| 321&nbsp;kW / 430&nbsp;bhp
| 1441&nbsp;kg / 3177&nbsp;lb
| 223 W/kg / 7&nbsp;lb/hp
|-
| [[Suzuki V-Strom 650]] [[V-twin engine|V-twin]] [[Dual-sport motorcycle|DualSport]] 650&nbsp;cc
| 50&nbsp;kW / 67&nbsp;bhp
| 194&nbsp;kg / 427&nbsp;lb
| 258&nbsp;W/kg / 6.4&nbsp;lb/hp
|-
| [[Chevrolet Corvette C6]] Z06<ref name="corvette_c6"/>
| 376&nbsp;kW / 505&nbsp;bhp
| 1421&nbsp;kg / 3133&nbsp;lb
| 265 W/kg / 6.2&nbsp;lb/hp
|-
| [[Porsche 997|Porsche 911 GT2]] 2007
| 390&nbsp;kW / 523&nbsp;bhp
| 1440&nbsp;kg / 3200&nbsp;lb
| 271 W/kg / 6.1&nbsp;lb/hp
|-
| [[Lamborghini Murciélago]] LP 670-4 SV 2009<ref>{{cite web|url=http://www.motorstars.org/documenti/lamborghini_murcielago_lp_670-4_superveloce_-_en.pdf|publisher=MotorStars|accessdate=2010-03-24|title=Press Release - Lamborghini Murciélago LP 670-4 SuperVeloce – the new king of the bulls - is even more powerful, lighter and faster}}</ref>
| 493&nbsp;kW / 661&nbsp;bhp <!-- 670 PS -->
| 1550&nbsp;kg / 3417&nbsp;lb
| 318 W/kg / 5.1&nbsp;lb/hp
|-
| [[McLaren F1]] GT 1997<ref>{{cite web|url=http://www.carfolio.com/specifications/models/car/?car=77319|publisher=Car Folio|accessdate=2010-01-08|title=1997 McLaren F1 GT Technical specifications}}</ref>
| 467.6&nbsp;kW / 627&nbsp;bhp
| 1220&nbsp;kg / 2690&nbsp;lb
| 403 W/kg / 4.3&nbsp;lb/hp
|-
| [[Bombardier Aerospace|Bombardier]] [[Bombardier Dash 8|Dash 8]] Q400 [[turboprop]] [[airliner]]<ref>{{cite web|url=http://www2.bombardier.com/q400/en/specifications.jsp|title=Bombardier Dash 8 Q400 Specifications|accessdate=2010-07-24|publisher=[[Bombardier Aerospace]]|year=1997}}</ref>
| 7,562&nbsp;kW / 10,142&nbsp;bhp
| 17,185&nbsp;kg / 37,888&nbsp;lb
| 440 W/kg / 3.7&nbsp;lb/hp
|-
| [[Supermarine Spitfire]] [[Fighter aircraft]] 1936
| 1,096&nbsp;kW / 1,470&nbsp;bhp
| 2,309&nbsp;kg / 5,090&nbsp;lb
| 475 W/kg / 3.46&nbsp;lb/hp
|-
| [[Messerschmitt Bf 109]] [[Fighter aircraft]] 1935
| 1,085&nbsp;kW / 1,455&nbsp;bhp
| 2,247&nbsp;kg / 4,954&nbsp;lb
| 483 W/kg / 3.40&nbsp;lb/hp
|-
| [[Thunderbolt (car)|Thunderbolt]] [[Land speed record]] car
| 3504&nbsp;kW / 4700&nbsp;bhp
| 7&nbsp;t / 15432&nbsp;lb
| 500 W/kg / 3.28&nbsp;lb/hp
|-
| [[Ferrari FXX]] 2005
| 597&nbsp;kW / 801&nbsp;bhp
| 1155&nbsp;kg / 2546&nbsp;lb
| 517 W/kg / 3.2&nbsp;lb/hp
|-
| [[Polaris Industries]] Assault Snowmobile 2009<ref>{{cite web|url=http://www.polarisindustries.com/en-us/Snowmobiles/2009/DeepSnow/800ASSAULTRMK/Pages/Specifications.aspx|publisher=Polaris Industries|title=2009 Polaris 800 Assault RMK146 Snowmobile Specifications & Price|accessdate=2010-01-19}}</ref>
| 115&nbsp;kW / 154&nbsp;bhp
| 221&nbsp;kg / 487&nbsp;lb
| 523 W/kg / 3.16&nbsp;lb/hp
|-
| [[Ultima GTR]] 720 2006<ref>{{cite web|url=http://www.supercarworld.com/cgi-bin/showgeneral.cgi?362|publisher=SupercarWorld|title=Ultima GTR 720  (2006 - date)|accessdate=2010-01-08}}</ref>
| 536.9&nbsp;kW / 720&nbsp;bhp
| 920&nbsp;kg / 2183&nbsp;lb
| 583 W/kg / 3&nbsp;lb/hp
|-
| [[Honda CBR1000RR]] 2009
| 133&nbsp;kW / 178&nbsp;bhp
| 199&nbsp;kg / 439&nbsp;lb
| 668 W/kg / 2.5&nbsp;lb/hp
|-
| [[Ariel Atom]] 500 V8 2011
| 372&nbsp;kW / 500&nbsp;bhp
| 550&nbsp;kg / 1212&nbsp;lb
| 676.3 W/kg / 2.45&nbsp;lb/hp
|-
| [[Peugeot 208 T16]] Pikes Peak 2013
| 652&nbsp;kW / 875&nbsp;bhp
| 875&nbsp;kg / 1930&nbsp;lb
| 745 W/kg / 2.2&nbsp;lb/hp
|-
| [[KillaCycle]] [[Drag racing]] [[Electric motorcycles and scooters|electric motorcycle]]
| 260&nbsp;kW / 350&nbsp;bhp
| 281&nbsp;kg / 619&nbsp;lb
| 925 W/kg / 1.77&nbsp;lb/hp
|-
| [[MTT Turbine Superbike]] 2008<ref>{{cite web|url=http://marineturbine.com/downloads/2008_Turbine_SUPERBIKE_brochure.pdf|publisher=Marine Turbine|accessdate=2010-01-08|title=The MTT Turbine Superbike}}</ref>
| 213.3&nbsp;kW / 286&nbsp;bhp
| 227&nbsp;kg / 500&nbsp;lb
| 940 W/kg / 1.75&nbsp;lb/hp
|-
| [[Vyrus]] 987 C3 4V V supercharged motorcycle 2010<ref>{{cite web|url=http://www.motorcycle.com/manufacturer/2010-vyrus-987-review-89399.html|publisher=Motorcycle.com|accessdate=2010-04-14|title=2010 Vyrus 987 Review}}</ref>
| 157.3&nbsp;kW / 211&nbsp;bhp
| 158&nbsp;kg / 348.3&nbsp;lb
| 996 W/kg / 1.65&nbsp;lb/hp
|-
| [[BMW]] [[Williams FW27]] [[Formula One]] 2005<ref>{{cite web|url=http://www.f1technical.net/f1db/cars/895|publisher=F1 Technical|accessdate=2010-01-12|title=Williams FW27}}</ref>
| 690&nbsp;kW / 925&nbsp;bhp
| 600&nbsp;kg / 1323&nbsp;lb
| 1150&nbsp;W/kg / 1.43&nbsp;lb/hp
|-
| [[Honda RC211V]] MotoGP 2004-6
| 176.73&nbsp;kW / 237&nbsp;bhp
| 148&nbsp;kg / 326&nbsp;lb
| 1194 W/kg / 1.37&nbsp;lb/hp
|-
| [[Boeing 747|Boeing 747-300]]<ref name="gelm6000"/> at Mach 0.84 cruise, 35,000&nbsp;ft altitude{{Disputed-inline|Jet Engines|date=December 2011}}
| 245&nbsp;MW / 328,656&nbsp;bhp <!-- 4 GE CF6-80C2B1 engines: 4x 247kN thrust at 893 km/h ~ Mach 0.84 ~ 248 m/s -->
| 178.1&nbsp;t / 392,800&nbsp;lb
| 1376 W/kg / 1.20&nbsp;lb/hp
|-
| [[John Force Racing]] [[Funny Car]] [[NHRA]] [[Drag Racing]] 2008<ref>{{cite web|url=http://automobile.automotive.com/70233/0805-john-force-funny-car-legend/index.html|publisher=Automobile Magazine|accessdate=2010-09-10|title=John Force - Funny Car Legend}}</ref>
| 5,963.60&nbsp;kW / 8,000&nbsp;bhp
| 1043&nbsp;kg / 2,300&nbsp;lb
| 5717 W/kg / 0.30&nbsp;lb/hp
|}
 
==See also==
* [[Thrust-to-weight ratio]]
* [[Vehicle metrics]]
* [[Energy density]]
* [[Propulsive efficiency]]
 
==References==
{{reflist|colwidth=30em}}
 
== External links ==
* [http://measurespeed.com/power-to-weight-ratio-calculator.php Measurespeed.com - Power to Weight Ratio Calculator]
 
{{DEFAULTSORT:Power-To-Weight Ratio}}
[[Category:Mechanics]]
[[Category:Power (physics)]]
[[Category:Engineering ratios]]

Latest revision as of 16:35, 17 July 2014

Her name is Felicidad Ahmad. The factor I adore most flower arranging and now I have time to take on new issues. His day job is a cashier and his wage has been truly satisfying. Kansas is our birth place and my mothers and fathers reside close by.

Also visit my webpage ... kangem.com