File:LogDirichletDensity-alpha 0.1 to alpha 1.9.gif

From formulasearchengine
Jump to navigation Jump to search

LogDirichletDensity-alpha_0.1_to_alpha_1.9.gif(364 × 364 pixels, file size: 2.03 MB, MIME type: image/gif, looped, 100 frames)

Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Template:Lowercase

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied.

The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism.

Definition

ε-symmetric forms and ε-quadratic forms are defined as follows.[1]

Given a module M over a *-ring R, let B(M) be the space of bilinear forms on M, and let T: B(M)B(M) be the "conjugate transpose" involution B(u,v)B(v,u)*. Let ε = ±1; then εT is also an involution. Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants.

As an exact sequence,

As kernel (algebra) and cokernel,

The notation Qε(M), Qε(M) follows the standard notation MG, MG for the invariants and coinvariants for a group action, here of the order 2 group (an involution).

We obtain a homomorphism (1 + εT): Qε(M) → Qε(M) which is bijective if 2 is invertible in R. (The inverse is given by multiplication with 1/2.)

An ε-quadratic form ψ ∈ Qε(M) is called non-degenerate if the associated ε-symmetric form (1 + εT)(ψ) is non-degenerate.

Generalization from *

If the * is trivial, then ε = ±1, and "away from 2" means that 2 is invertible: 1/2 ∈ R.

More generally, one can take for ε ∈ R any element such that ε*ε =1. ε = ±1 always satisfy this, but so does any element of norm 1, such as complex numbers of unit norm.

Similarly, in the presence of a non-trivial *, ε-symmetric forms are equivalent to ε-quadratic forms if there is an element λ ∈ R such that λ* + λ = 1. If * is trivial, this is equivalent to 2λ = 1 or λ = 1/2.

For instance, in the ring (the integral lattice for the quadratic form 2x2-2x+1), with complex conjugation, is such an element, though 1/2 ∉ R.

Intuition

In terms of matrices, (we take V to be 2-dimensional):

,
which is a quotient map with kernel .

Refinements

An intuitive way to understand an ε-quadratic form is to think of it as a quadratic refinement of its associated ε-symmetric form.

For instance, in defining a Clifford algebra over a general field or ring, one quotients the tensor algebra by relations coming from the symmetric form and the quadratic form: vw + wv = 2B(v,w) and . If 2 is invertible, this second relation follows from the first (as the quadratic form can be recovered from the associated bilinear form), but at 2 this additional refinement is necessary.

Examples

An easy example for an ε-quadratic form is the standard hyperbolic ε-quadratic form . (Here, R* := HomR(R,R) denotes the dual of the R-module R.) It is given by the bilinear form . The standard hyperbolic ε-quadratic form is needed for the definition of L-theory.

For the field of two elements R = F2 there is no difference between (+1)-quadratic and (−1)-quadratic forms, which are just called quadratic forms. The Arf invariant of a nonsingular quadratic form over F2 is an F2-valued invariant with important applications in both algebra and topology, and plays a role similar to that played by the discriminant of a quadratic form in characteristic not equal to two.

Manifolds

47 year-old Podiatrist Hyslop from Alert Bay, has lots of hobbies and interests that include fencing, property developers in condo new launch singapore and handball. Just had a family trip to Monasteries of Haghpat and Sanahin. The free part of the middle homology group (with integer coefficients) of an oriented even-dimensional manifold has an ε-symmetric form, via Poincaré duality, the intersection form. In the case of singly even dimension this is skew-symmetric, while for doubly even dimension this is symmetric. Geometrically this corresponds to intersection, where two n/2-dimensional submanifolds in an n-dimensional manifold generically intersect in a 0-dimensional submanifold (a set of points), by adding codimension. For singly even dimension the order switches sign, while for doubly even dimension order does not change sign, hence the ε-symmetry. The simplest cases are for the product of spheres, where the product and respectively give the symmetric form and skew-symmetric form In dimension two, this yields a torus, and taking the connected sum of g tori yields the surface of genus g, whose middle homology has the standard hyperbolic form.

With additional structure, this ε-symmetric form can be refined to an ε-quadratic form. For doubly even dimension this is integer valued, while for singly even dimension this is only defined up to parity, and takes values in Z/2. For example, given a framed manifold, one can produce such a refinement. For singly even dimension, the Arf invariant of this skew-quadratic form is the Kervaire invariant.

Given an oriented surface Σ embedded in R3, the middle homology group H1(Σ) carries not only a skew-symmetric form (via intersection), but also a skew-quadratic form, which can be seen as a quadratic refinement, via self-linking. The skew-symmetric form is an invariant of the surface Σ, whereas the skew-quadratic form is an invariant of the embedding Σ ⊂ R3, e.g. for the Seifert surface of a knot. The Arf invariant of the skew-quadratic form is a framed cobordism invariant generating the first stable homotopy group .

In the standard embedding of the torus, a (1,1) curve self-links, thus .

For the standard embedded torus, the skew-symmetric form is given by (with respect to the standard symplectic basis), and the skew-quadratic refinement is given by xy with respect to this basis: Q(1,0) = Q(0,1)=0: the basis curves don't self-link; and Q(1,1) = 1: a (1,1) self-links, as in the Hopf fibration. (This form has Arf invariant 0, and thus this embedded torus has Kervaire invariant 0.)

Applications

A key application is in algebraic surgery theory, where even L-groups are defined as Witt groups of ε-quadratic forms, by C.T.C.Wall

References

  1. Foundations of algebraic surgery, by Andrew Ranicki, p. 6

Summary

Description
English: We illustrate the log of the density function:

for . In other words, we have two parameters varying on the two axes, and an implicit .

The picture illustrates the case where and we vary over time the parameter from 0.1 to 1.9.

Maple Code

The animated plot was generated using Maple 11, with the following code:

restart; with(plots);

B := (a1, a2, a3) -> (GAMMA(1.0*a1) * GAMMA(1.0*a2) * GAMMA(1.0*a3)) / GAMMA(1.0*a1+1.0*a2+1.0*a3);

f := (x1, x2, a1, a2, a3) ->  (x1^(a1-1)) * (x2^(a2-1)) * ( (1-x1-x2)^(a3-1)) /B(a1,a2,a3) ;

animate ( plot3d,  [eval(log(f(x1, x2, a1, a2, a3)), {a1=a, a2=a, a3=a}), 
x1=0.00..1, x2=0.00..1, axes=BOXED, grid=[25,25],gridstyle=triangular,orientation=[-135, 60],
shading=zhue, contours=20, style=surfacecontour, view=-3..2 ], a=0.1..1.9, frames=100);

Dirichlet


Please cite the original work if you create derivatives.
Date 27 October 2007 (original upload date)
Source Transferred from en.wikipedia to Commons.
Author The original uploader was Ipeirotis at English Wikipedia.

Licensing

w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Original upload log

The original description page was here. All following user names refer to en.wikipedia.
Date/Time Dimensions User Comment
2007-10-27 21:06 364×364× (2128038 bytes) Ipeirotis The log of the density function Dir(a): <math>\log (f(x_1,\dots, x_{K-1}; \alpha_1,\dots, \alpha_K)) = \log(\frac{1}{\mathrm{B}(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}) </math> We have two parameters <math>x_1, x_2</math> varying on the two axes, and

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

27 October 2007

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:02, 26 January 2019Thumbnail for version as of 06:02, 26 January 2019364 × 364 (2.03 MB)wikimediacommons>BD2412Transferred from en.wikipedia via #commonshelper

There are no pages that use this file.