215 (number): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>David Eppstein
refimprove
 
en>Lordandrei
In other fields: area code, uses 214 for template
 
Line 1: Line 1:
She is recognized by [http://fankut.com/index.php?do=/profile-2572/info/ over the counter std test] title of Myrtle Shryock. To gather cash is what her family and her appreciate. North Dakota is our beginning place. For many years he's been operating as a receptionist.
The '''Spike-triggered average (STA)''' is a tool for characterizing the response properties of a neuron using the [[action potentials|spikes]] emitted in response to a time-varying stimulus.  The STA provides an estimate of a neuron's linear [[receptive field]].  It is a useful technique for the analysis of [[electrophysiology|electrophysiological]] data.
 
[[File:SpikeTriggeredAverage.png|right|thumb|360px|Diagram showing how the STA is calculated. A stimulus (consisting here of 9 pixel values for each stimulus frame) is presented, and spikes from the neuron are recorded. The stimuli in some time window preceding each spike (here consisting of 3 time bins) are selected (orange boxes) and then averaged to obtain the STA. The STA (shown at right) indicates that this neuron is selective for a group of 3 white pixels that change spatial position on each of three consecutive stimulus frames.]]
 
Mathematically, the STA is the average stimulus preceding a spike.<ref name="deBoer68">de Boer and Kuyper (1968) Triggered Correlation. ''IEEE Transact. Biomed. Eng.'', 15:169-179</ref><ref name="Marmarelis72">Marmarelis, P. Z. and Naka, K. (1972). White-noise analysis of a neuron chain: an application of the Wiener theory.  ''Science'', 175:1276-1278</ref><ref name="Chichilnisky01">Chichilnisky, E. J. (2001).  A simple white noise analysis of neuronal light responses. ''Network: Computation in Neural Systems'', 12:199-213</ref><ref name="simoncelli">Simoncelli, E. P., Paninski, L., Pillow, J. & Swartz, O. (2004).  [http://www.cns.nyu.edu/~lcv/pubs/makeAbs.php?loc=Simoncelli03c "Characterization of neural responses with stochastic stimuli"].  In M. Gazzaniga (Ed.) ''The Cognitive Neurosciences, III'' (pp. 327-338). MIT press.</ref>  To compute the STA, the stimulus in the time window preceding each spike is extracted, and the resulting (spike-triggered) stimuli are averaged (see diagram).  The STA provides an [[Bias of an estimator|unbiased]] estimate of a neuron's receptive field only if the stimulus distribution is spherically symmetric (e.g., [[Gaussian noise|Gaussian white noise]]).<ref name = "Chichilnisky01"/><ref name="Paninski03">Paninski, L. (2003). Convergence properties of some spike-triggered analysis techniques. ''Network: Computation in Neural Systems'' 14:437-464</ref><ref name ="SharpeeRustBialek04">Sharpee, T.O., Rust, N.C., & Bialek, W. (2004). Analyzing neural responses to natural signals: Maximally informative dimensions. ''Neural Computation'' 16:223-250</ref>
 
The STA has been used to characterize [[retinal ganglion cells]],<ref>Sakai and Naka (1987).</ref><ref>Meister, Pine, and Baylor (1994).</ref> neurons in the [[lateral geniculate nucleus]] and [[simple cell]]s in the [[striate cortex]] (V1) .<ref>Jones and Palmer (1987).</ref><ref>McLean and Palmer (1989).</ref>  It can be used to estimate the linear stage of the [[linear-nonlinear-Poisson cascade model|linear-nonlinear-Poisson (LNP)]] cascade model.<ref name="simoncelli"/> 
 
Spike-triggered averaging is also commonly referred to as “reverse correlation″ or “white-noise analysis”.  The STA is well known as the first term in the [[Volterra series|Volterra kernel]] or [[Wiener series|Wiener kernel]] series expansion.<ref>Lee and Schetzen (1965). Measurement of the Wiener kernels of a non- linear system by cross-correlation. ''International Journal of Control, First Series'', 2:237-254</ref>  It is closely related to [[linear regression]].
 
== Mathematical Definition ==
 
===Standard STA===
 
Let <math>\mathbf{x_i}</math> denote the spatio-temporal stimulus vector preceding the <math>i</math>'th time bin, and <math>y_i</math> the spike count in that bin.  The stimuli can be assumed to have zero mean (i.e., <math>E[\mathbf{x}]=0</math>).  If not, it can be transformed to have zero-mean by subtracting the mean stimulus from each vector.  The STA is given by
: <math>\mathrm{STA} = \tfrac{1}{n_{sp}}\sum_{i=1}^T y_i \mathbf{x_i},</math>
where <math>n_{sp} = \sum y_i</math>, the total number of spikes. 
 
This equation is more easily expressed in matrix notation: let <math>X</math> denote a matrix whose <math>i</math>'th row is the stimulus vector <math>\mathbf{x_i^T}</math> and let <math>\mathbf{y}</math> denote a column vector whose <math>i</math>th element is <math>y_i</math>.  Then the STA can be written
: <math>\mathrm{STA} = \tfrac{1}{n_{sp}} X^T \mathbf{y}. </math>
 
===Whitened STA===
 
If the stimulus is not [[white noise]], but instead has non-zero correlation across space or time, the standard STA provides a biased estimate of the linear receptive field.<ref name="Paninski03"/>  It may therefore be appropriate to whiten the STA by the inverse of the stimulus covariance matrix.  The resulting estimator is known as the whitened STA, which is given by
: <math>\mathrm{STA}_w = \left(\tfrac{1}{T}\sum_{i=1}^T\mathbf{x_i}\mathbf{x_i}^T\right)^{-1} \left(\tfrac{1}{n_{sp}} \sum_{i=1}^T y_i \mathbf{x_i}\right),</math>
where the first term is the inverse covariance matrix of the raw stimuli and the second is the standard STA. In matrix notation, this can be written
: <math>\mathrm{STA}_w = \tfrac{T}{n_{sp}} \left(X^TX\right)^{-1}X^T \mathbf{y}. </math>
The whitened STA is unbiased only if the stimulus distribution can be described by a correlated Gaussian distribution <ref name ="SharpeeRustBialek04"/> (correlated Gaussian distributions are elliptically symmetric, i.e. can be made spherically symmetric by a linear transformation, but not all elliptically symmetric distributions are Gaussian).  This is a weaker condition than spherical symmetry.
 
The whitened STA is equivalent to [[linear regression|linear least-squares regression]] of the stimulus against the spike train.
 
===Regularized STA===
 
In practice, it may be necessary to [[Regularization (mathematics)|regularize]] the whitened STA, since whitening amplifies noise along stimulus dimensions that are poorly explored by the stimulus (i.e., axes along which the stimulus has low variance). A common approach to this problem is [[Tikhonov regularization|ridge regression]].  The regularized STA, computed using ridge regression, can be written
: <math>\mathrm{STA}_{ridge} = \tfrac{T}{n_{sp}} \left(X^TX + \lambda I\right)^{-1}X^T \mathbf{y},</math>
where <math>I</math> denotes the identity matrix and <math>\lambda</math> is the ridge parameter controlling the amount of regularization.   This procedure has a simple Bayesian interpretation: ridge regression is equivalent to placing a zero-mean Gaussian prior on the elements of the STA. The ridge parameter sets the inverse variance of this prior.
 
==Statistical Properties==
 
For responses generated according to an [[linear-nonlinear-Poisson cascade model|LNP]] model, the whitened STA provides an estimate of the subspace spanned by the linear receptive field.  The properties of this estimate are as follows
 
===Consistency===
The whitened STA is a [[consistent estimator]], i.e., it converges to the true linear subspace, if
# The stimulus distribution <math>P(\mathbf{x})</math> is [[Elliptical distribution|elliptically symmetric]], e.g., [[Gaussian Distribution|Gaussian]].  ([[Bussgang theorem|Bussgang's theorem]])
# The expected STA is not zero, i.e., nonlinearity induces a shift in the spike-triggered stimuli.<ref name="Paninski03"/>
 
===Optimality===
The whitened STA is an asymptotically [[efficient estimator]] if
# The stimulus distribution <math>P(\mathbf{x})</math> is elliptically symmetric
# The neuron's nonlinear response function is the exponential, <math>exp(x)</math>.<ref name="Paninski03"/>
 
For arbitrary stimuli, the STA is generally not consistent or efficient.  For such cases, [[maximum likelihood]] and [[Mutual information|information-based]] estimators <ref name="Paninski03"/><ref name ="SharpeeRustBialek04"/><ref name ="KouhSharpee09">Kouh M. & Sharpee, T.O. (2009). Estimating linear-nonlinear models using Rényi divergences, ''Network: Computation in Neural Systems'' 20(2): 49–68</ref> have been developed that are both consistent and efficient.
 
==See also==
* [[Spike-triggered covariance]]
* [[Linear-nonlinear-Poisson cascade model]]
* [[Sliced inverse regression]]
 
==References==
{{reflist}}
 
==External links==
* [http://pillowlab.cps.utexas.edu/code_STC.html Matlab code for computing the STA]
 
{{DEFAULTSORT:Spike-Triggered Average}}
[[Category:Neuroscience]]
[[Category:Neurophysiology]]
[[Category:Electrophysiology]]
[[Category:Computational neuroscience]]

Latest revision as of 22:05, 11 August 2013

The Spike-triggered average (STA) is a tool for characterizing the response properties of a neuron using the spikes emitted in response to a time-varying stimulus. The STA provides an estimate of a neuron's linear receptive field. It is a useful technique for the analysis of electrophysiological data.

Diagram showing how the STA is calculated. A stimulus (consisting here of 9 pixel values for each stimulus frame) is presented, and spikes from the neuron are recorded. The stimuli in some time window preceding each spike (here consisting of 3 time bins) are selected (orange boxes) and then averaged to obtain the STA. The STA (shown at right) indicates that this neuron is selective for a group of 3 white pixels that change spatial position on each of three consecutive stimulus frames.

Mathematically, the STA is the average stimulus preceding a spike.[1][2][3][4] To compute the STA, the stimulus in the time window preceding each spike is extracted, and the resulting (spike-triggered) stimuli are averaged (see diagram). The STA provides an unbiased estimate of a neuron's receptive field only if the stimulus distribution is spherically symmetric (e.g., Gaussian white noise).[3][5][6]

The STA has been used to characterize retinal ganglion cells,[7][8] neurons in the lateral geniculate nucleus and simple cells in the striate cortex (V1) .[9][10] It can be used to estimate the linear stage of the linear-nonlinear-Poisson (LNP) cascade model.[4]

Spike-triggered averaging is also commonly referred to as “reverse correlation″ or “white-noise analysis”. The STA is well known as the first term in the Volterra kernel or Wiener kernel series expansion.[11] It is closely related to linear regression.

Mathematical Definition

Standard STA

Let xi denote the spatio-temporal stimulus vector preceding the i'th time bin, and yi the spike count in that bin. The stimuli can be assumed to have zero mean (i.e., E[x]=0). If not, it can be transformed to have zero-mean by subtracting the mean stimulus from each vector. The STA is given by

STA=1nspi=1Tyixi,

where nsp=yi, the total number of spikes.

This equation is more easily expressed in matrix notation: let X denote a matrix whose i'th row is the stimulus vector xiT and let y denote a column vector whose ith element is yi. Then the STA can be written

STA=1nspXTy.

Whitened STA

If the stimulus is not white noise, but instead has non-zero correlation across space or time, the standard STA provides a biased estimate of the linear receptive field.[5] It may therefore be appropriate to whiten the STA by the inverse of the stimulus covariance matrix. The resulting estimator is known as the whitened STA, which is given by

STAw=(1Ti=1TxixiT)1(1nspi=1Tyixi),

where the first term is the inverse covariance matrix of the raw stimuli and the second is the standard STA. In matrix notation, this can be written

STAw=Tnsp(XTX)1XTy.

The whitened STA is unbiased only if the stimulus distribution can be described by a correlated Gaussian distribution [6] (correlated Gaussian distributions are elliptically symmetric, i.e. can be made spherically symmetric by a linear transformation, but not all elliptically symmetric distributions are Gaussian). This is a weaker condition than spherical symmetry.

The whitened STA is equivalent to linear least-squares regression of the stimulus against the spike train.

Regularized STA

In practice, it may be necessary to regularize the whitened STA, since whitening amplifies noise along stimulus dimensions that are poorly explored by the stimulus (i.e., axes along which the stimulus has low variance). A common approach to this problem is ridge regression. The regularized STA, computed using ridge regression, can be written

STAridge=Tnsp(XTX+λI)1XTy,

where I denotes the identity matrix and λ is the ridge parameter controlling the amount of regularization. This procedure has a simple Bayesian interpretation: ridge regression is equivalent to placing a zero-mean Gaussian prior on the elements of the STA. The ridge parameter sets the inverse variance of this prior.

Statistical Properties

For responses generated according to an LNP model, the whitened STA provides an estimate of the subspace spanned by the linear receptive field. The properties of this estimate are as follows

Consistency

The whitened STA is a consistent estimator, i.e., it converges to the true linear subspace, if

  1. The stimulus distribution P(x) is elliptically symmetric, e.g., Gaussian. (Bussgang's theorem)
  2. The expected STA is not zero, i.e., nonlinearity induces a shift in the spike-triggered stimuli.[5]

Optimality

The whitened STA is an asymptotically efficient estimator if

  1. The stimulus distribution P(x) is elliptically symmetric
  2. The neuron's nonlinear response function is the exponential, exp(x).[5]

For arbitrary stimuli, the STA is generally not consistent or efficient. For such cases, maximum likelihood and information-based estimators [5][6][12] have been developed that are both consistent and efficient.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. de Boer and Kuyper (1968) Triggered Correlation. IEEE Transact. Biomed. Eng., 15:169-179
  2. Marmarelis, P. Z. and Naka, K. (1972). White-noise analysis of a neuron chain: an application of the Wiener theory. Science, 175:1276-1278
  3. 3.0 3.1 Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12:199-213
  4. 4.0 4.1 Simoncelli, E. P., Paninski, L., Pillow, J. & Swartz, O. (2004). "Characterization of neural responses with stochastic stimuli". In M. Gazzaniga (Ed.) The Cognitive Neurosciences, III (pp. 327-338). MIT press.
  5. 5.0 5.1 5.2 5.3 5.4 Paninski, L. (2003). Convergence properties of some spike-triggered analysis techniques. Network: Computation in Neural Systems 14:437-464
  6. 6.0 6.1 6.2 Sharpee, T.O., Rust, N.C., & Bialek, W. (2004). Analyzing neural responses to natural signals: Maximally informative dimensions. Neural Computation 16:223-250
  7. Sakai and Naka (1987).
  8. Meister, Pine, and Baylor (1994).
  9. Jones and Palmer (1987).
  10. McLean and Palmer (1989).
  11. Lee and Schetzen (1965). Measurement of the Wiener kernels of a non- linear system by cross-correlation. International Journal of Control, First Series, 2:237-254
  12. Kouh M. & Sharpee, T.O. (2009). Estimating linear-nonlinear models using Rényi divergences, Network: Computation in Neural Systems 20(2): 49–68