Red–black tree

From formulasearchengine
Revision as of 05:35, 29 January 2014 by en>Monkbot (References: Fix CS1 deprecated date parameter errors)
Jump to navigation Jump to search

There are several well-known theorems in functional analysis known as the Riesz representation theorem. They are named in honour of Frigyes Riesz.

This article will describe his theorem concerning the dual of a Hilbert space, which is sometimes called the Fréchet-Riesz theorem. For the theorems relating linear functionals to measures, see Riesz–Markov–Kakutani representation theorem.

The Hilbert space representation theorem

This theorem establishes an important connection between a Hilbert space and its (continuous) dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular, natural one as will be described next.

Let H be a Hilbert space, and let H* denote its dual space, consisting of all continuous linear functionals from H into the field R or C. If x is an element of H, then the function φx, defined by

ϕx(y)=y,xyH

where , denotes the inner product of the Hilbert space, is an element of H*. The Riesz representation theorem states that every element of H* can be written uniquely in this form.

Theorem. The mapping Φ: HH* defined by Φ(x) = φx is an isometric (anti-) isomorphism, meaning that:

The inverse map of Φ can be described as follows. Given an element φ of H*, the orthogonal complement of the kernel of φ is a one-dimensional subspace of H. Take a non-zero element z in that subspace, and set x=φ(z)z/z2. Then Φ(x) = φ.

Historically, the theorem is often attributed simultaneously to Riesz and Fréchet in 1907 (see references).

In the mathematical treatment of quantum mechanics, the theorem can be seen as a justification for the popular bra-ket notation. When the theorem holds, every ket |ψ has a corresponding bra ψ|, and the correspondence is unambiguous.

References

  • M. Fréchet (1907). Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416.
  • F. Riesz (1907). Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411.
  • F. Riesz (1909). Sur les opérations fonctionnelles linéaires. C. R. Acad. Sci. Paris 149, 974–977.
  • J. D. Gray, The shaping of the Riesz representation theorem: A chapter in the history of analysis, Archive for History in the Exact Sciences, Vol 31(2) 1984–85, 127–187.
  • P. Halmos Measure Theory, D. van Nostrand and Co., 1950.
  • P. Halmos, A Hilbert Space Problem Book, Springer, New York 1982 (problem 3 contains version for vector spaces with coordinate systems).
  • D. G. Hartig, The Riesz representation theorem revisited, American Mathematical Monthly, 90(4), 277–280 (A category theoretic presentation as natural transformation).
  • Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.

    my web-site http://himerka.com/
  • Walter Rudin, Real and Complex Analysis, McGraw-Hill, 1966, ISBN 0-07-100276-6.
  • 22 year-old Systems Analyst Rave from Merrickville-Wolford, has lots of hobbies and interests including quick cars, property developers in singapore and baking. Always loves visiting spots like Historic Monuments Zone of Querétaro.

    Here is my web site - cottagehillchurch.com
  • Template:Planetmath reference