Eilenberg–Mazur swindle
The Binder parameter[1] in statistical physics, also known as the fourth-order culumant in Ising model,[2] is used to identify phase transition points in numerical simulations. It is defined as the kurtosis of the order parameter. For example in spin glasses one defines the Binder as
where stands for Boltzmann average, for average over the disorder and is the overlap between two identical replicas of the system. The phase transition point is usually identified comparing the behavior of as a function of the temperature for different values of the system size . The transition temperature is the unique point where the different curves cross. This is based on finite size scaling hypothesis, according to which, in the critical region the Binder behaves as , where .