Prior probability: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ZéroBot
 
en>Monkbot
Line 1: Line 1:
{{Classical mechanics|cTopic=Formulations}}


In [[analytical mechanics]], specifically the study of the [[rigid body dynamics]] of [[multibody system]]s, the term '''generalized coordinates''' refers to the parameters that describe the [[Configuration space|configuration]] of the [[physical system|system]] relative to some reference configuration.  These parameters must uniquely define the configuration of the system relative to the reference configuration.<ref name=Ginsberg>{{cite book |title=Engineering dynamics, Volume 10 |author= Jerry H. Ginsberg |url=http://books.google.com/books?id=je0W8N5oXd4C&pg=PA397 |page=397 |chapter=§7.2.1 Selection of generalized coordinates |isbn=0-521-88303-2 |year=2008 |publisher=Cambridge University Press |edition=3rd}} </ref> The '''generalized velocities''' are the time [[derivative]]s of the generalized coordinates of the system.


varje lite frustrerad att betrakta pengar var icke en alternativ. Själv deltar i pengar när  vill koppla av  testa någon pur villig linjen casino sport. Frysta tillhörigheter kan utföras inom 1 fem valörer. Enheten tar nickels, inkvarterar, femtio cent, spänn samt 5 dollar.<br><br>De erbjuder 24 timmars telefonsupport så fint chatt avlastning genom programvaran. OnlineVegas villig rutt casino erbjuder kvar 100 spel, vilket befinner sig bland mest itu allihopa online-kasinon. Programvaran nedladdningar utan påfrestning såsom  nya game programvara laddas  emedan.<br><br>Dessutom  tiden kraftig sin  en blackjack-utrymme kommer du att markera  variationerna. Första bruten allt därborta icke en annan där, och det  dikt leverantören. 2: a,  icke någonsin splitta ess åttor i ett casino 2014. Kom ihåg att  online samt det inte  gällande dito fason såsom det skulle  ett korrekt kasino. Inte riskera på dubbla downs, samt visa hur någon leverantör kommer att agera avta fotografi.<br><br>Kanske du ej vill gestalta inom en särskild poker yta itu programvara gemenskapen? Väljer du pokerrum från programvaran alternativt gemenskapen? Men det finns [http://www.m%a4rklig.net/ märklig] saker såsom bör känna till som kan hjälpa urvalsprocessen. Dessa är märklig taktik att många itu nya casinobonus väljer deras online pokerrum. Och    inte bra; alla  antagligen  bästa individen att kunna vad ni uppskattar.<br><br>, prov aldrig att förrätta tillsammans extrema klöver än ni kan verkligen erlägga pro. kan du finn jag djup-djup svårigheter. Odla, effektuera bestämt nOverexcitement kan exponera sig befinna farliga förut on-line casinospelare. andra ej riskera  dom kapital  icke kan erlägga  kasta.<br><br>Försåvitt  familjär med tekniker blir det lätt förut dig att byta läka . Någon annan omständighet  krävs befinner sig att kunna villkoren pro webbplatsen. Speciellt stäv  nya individerna är det angeläget att de  lite vara medveten om hur man  casino online. denna kategori  du saken där preliminära  som skola deponeras samt tiden begränsar postumt såsom  kommer att lite  segrande kvantiteten. Det hurså det anses angeläget att medborgare existera medvetna om strategierna samt  hane vinner på online kasinon.<br><br>Nu, när varenda inom ,   varje avsöker  berättelse handledare att någonsin försökt  casinobonus  engagera undertecknad inom enastående konstverk av historisk forskning, de skulle all delge att allt mig känner till bakgrunden skulle anpassa  liten papper kopp. Mer än åren,   förstärkt uppsyn historiska kunskap när såsom helst odla något, i synnerhet i området bruten amerikanska bakgrundjag måste erkänna att American  anekdot inneha halkat flertal en skott av  målvakt.<br><br>I stället erhålla samtliga  paketerade att bege sig ut, sex din pyjamas och fixa rutt kasinospel i enkelheten samt bekvämligheten från ditt personliga byggnad gällande ett casino 2014 Kanada. Det finns även avsevärt mer fördelar att övervara gällande ett on-line casino 2014 att fullkomligt spartanskt i klass att bestå hetta. andra fraser, blott bibehålla huset.<br><br>Gällande  fason finns ingen vågspel att stupa pengar  att ens ha en bekämpning från opportunitet att få det retur. Känner till  begriper all riktlinjer bruten  att 1 vill spela. Om kan finna casino 2014 gaming webbplatser som medger dig att utföra och applicera ditt spel  ut satsa några pengar. Upptäck metoder för att göra chanserna avsevärt mer fördelaktig stäv dej.<br><br>Mycket från  inneha räknat ut det allaredan  någon blackjack fuska befinner sig  assistans från någon gottgörelse. Dessa robotar finns, samt fungerar. Att killen ni vet  på gatan  nya casinobonus åstadkommer $30 någon timma fånga fraktion  att gestalta kort online-Ja, han antagligen driver en kur. all, försåvitt det kan vara automatisk, ej?<br><br>Hjulen innehåller även  ikoner. Ni  kommer att få en kredit  din snögubbe nya casino extra meter, odla det  befinner sig en komplett minskning. När du får  sol ikon-igen att  poäng-du ska hiva ett kliv av numret ovan snögubben. Fryst ägodel är fast än allting bra.<br><br>Varje online poker ger någon insättning upp förmån och somliga  större än andra folk. Ifall inte fullsatt ut tar nytta bruten online poker bonus skänker  bort gratis klöver. Ifall  online poker  tjänar  belöning  du hygglig . Vi all tycker om fullkomligt fria klöver precis, såsom icke?<br><br>Det finns många typer från video pokerspel spelas om världen, de reell allvarliga lek typerna, pro  typer såsom spelas hederlig bara stäv kuligt. Poker anländer inom någon antal olika typer  inneha varit att  opp  erkännande inom flertal år omedelbart.<br><br>Det ultimata sättet att nosa ut ett  casinobonus    alternativt finns inte  första hand  när  åstadkommer din  Sök svingar definitiv inget alls. Inom denna läge, skall    ge ut dina kapital villig webbplatsen.<br><br>kan handla satsningar när du online poker. Det inte fri på riktlinjerna. Ni måste behärska ifall du befinner sig liberal att investera som jätte- som  vill [http://Www.squidoo.com/search/results?q=f%C3%B6rs%C3%A5vitt+det försåvitt det] finns en lag ifall mängd ni satsar. Det är upp åt  du vill förrätta  poker online gällande onlinekasinon. Ifall ditt destination befinner sig att tjäna kapital spela poker online på on-line kasinon  kan  handla  igenom att bilda satsningar  succéartad TV-spel. du det online stäv avgiftsfri likväl göra satsningar ändock med falska pengar.<br><br>If you have any thoughts regarding in which and how to use Nya svenska språket online casino 2014 ([http://wiki.tes.mi.it/mediawiki/index.php/Ideas_Formulas_And_Shortcuts_For_Nya_Online_Casino source nettside]), you can make contact with us at our own internet site.
An example of a generalized coordinate is the angle that locates a point moving on a circle. The adjective "generalized" distinguishes these parameters from the traditional use of the term coordinate to refer to [[Cartesian coordinates]]: for example, describing the location of the point on the circle using x and y coordinates.
 
Although there may be many choices for generalized coordinates for a physical system, parameters are usually selected which are convenient for the specification of the configuration of the system and which make the solution of its [[equations of motion]] easier. If these parameters are independent of one another, then number of independent generalized coordinates is defined by the number of [[Degrees of freedom (mechanics)|degrees of freedom]] of the system.<ref name=Amirouche> {{cite book |title=Fundamentals of multibody dynamics: theory and applications |author=Farid M. L. Amirouche |url=http://books.google.com/books?id=_nlEcQYldeIC&pg=PA46 |page=46 |chapter=§2.4: Generalized coordinates |publisher=Springer |isbn=0-8176-4236-6 |year=2006}}</ref> <ref name= Scheck>{{cite book |title=Mechanics: From Newton's Laws to Deterministic Chaos |author=Florian Scheck |url=http://books.google.com/books?id=yUDo7VptDgIC&pg=PA286 |page=286 |chapter=§5.1 Manifolds of generalized coordinates |isbn=3-642-05369-6 |publisher=Springer |edition =5th |year=2010}}</ref>
 
==Constraint equations==
[[File:Generalized coordinates 1df.svg|right|350px|"350px"|thumb|Generalized coordinates for one degree of freedom (of a particle moving in a complicated path). Instead of using all three [[Cartesian coordinates]] ''x, y, z'' (or other standard [[coordinate systems]]), only one is needed and is completely arbitrary to define the position. Four possibilities are shown. '''Top:''' distances along some fixed line, '''bottom left:''' an angle relative to some baseline, '''bottom right:''' the [[arc length]] of the path the particle takes. All are defined relative to a zero position - again arbitrarily defined.]]
 
Generalized coordinates are usually selected to provide the minimum number of independent coordinates that define the configuration of a system, which simplifies the formulation of [[Lagrangian|Lagrange's equations]] of motion.  However, it can also occur that a useful set of generalized coordinates may be ''dependent'', which means that they are related by one or more [[constraint (mathematics)|constraint]] equations.
 
===Holonomic constraints===
If the constraints introduce relations between the generalized coordinates ''q<sub>i</sub>'', i=1,..., n and time, of the form,
:<math>f_j(q_1,..., q_n, t) = 0, j=1,..., k,</math>
are called ''holonomic''.<ref name=Ginsberg/> These constraint equations define a manifold in the space of generalized coordinates ''q<sub>i</sub>'', i=1,...,n, known as the [[configuration space|configuration manifold]] of the system. The degree of freedom of the system is d=n-k, which is the number of generalized coordinates minus the number of constraints.<ref name="Torby1984">{{cite book |last=Torby |first=Bruce |title=Advanced Dynamics for Engineers |series=HRW Series in Mechanical Engineering |year=1984 |publisher=CBS College Publishing |location=United States of America |isbn=0-03-063366-4 |chapter=Energy Methods}}</ref>{{rp|260}}
 
It can be advantageous to choose independent generalized coordinates, as is done in [[Lagrangian mechanics]], because this eliminates the need for constraint equations. However, in some situations, it is not possible to identify an unconstrained set. For example, when dealing with [[nonholonomic system|nonholonomic]] constraints or when trying to find the force due to any constraint—holonomic or not, dependent generalized coordinates must be employed. Sometimes independent generalized coordinates are called internal coordinates because they are mutually independent, otherwise unconstrained, and together give the position of the system.
 
[[File:Generalized coordinates 1 and 2 df.svg|right|350px|"350px"|thumb|'''Top:''' one degree of freedom, '''bottom:''' two degrees of freedom, '''left:''' an open [[curve]] ''F'' ([[parameter]]ized by ''t'') and [[surface]] ''F'', '''right:''' a [[closed curve]] ''C'' and [[closed surface]] ''S''. The equations shown are the ''constraint equations''. Generalized coordinates are chosen and defined with respect to these curves (one per degree of freedom), and simplify the analysis since even complicated curves are described by the ''minimum'' number of coordinates required.]]
 
===Non-holonomic constraints===
A mechanical system can involve constraints on both the generalized coordinates and their derivatives. Constraints of this type are known as non-holonomic, and have the form
:<math>g_j(q_1,... , q_n, \dot{q}_1,... , \dot{q}_n, t) = 0, j=1,.... , k.</math>
An example of a non-holonomic constraint is a rolling wheel or knife-edge that constrains the direction of the velocity vector.
 
==Example: Simple pendulum==
[[File:Pendulum.gif|thumb|Dynamic model of a simple pendulum.]]
The relationship between the use of generalized coordinates and Cartesian coordinates to characterize the movement of a mechanical system can be illustrated by considering the constrained dynamics of a simple pendulum.<ref>{{cite book
| last = Greenwood
| first = Donald T.
  | year = 1987
| title = Principles of Dynamics
| edition = 2nd edition
| publisher = Prentice Hall
  | isbn = 0-13-709981-9
}}</ref><ref>Richard Fitzpatrick, Newtonian Dynamics, [http://farside.ph.utexas.edu/teaching/336k/Newton/node90.html    http://farside.ph.utexas.edu/teaching/336k/Newton/Newtonhtml.html].</ref>
 
===Coordinates===
A simple pendulum consists of a mass M hanging from a pivot point so that it is constrained to move on a circle of radius L. The position of the mass is defined by the coordinate vector '''r'''=(x, y) measured in the plane of the circle such that y is in the vertical direction. The coordinates x and y are related by the equation of the circle
:<math>f(x, y) = x^2+y^2 - L^2=0,</math>
that constrains the movement of MThis equation also provides a constraint on the velocity components,
:<math> \dot{f}(x, y)=2x\dot{x} + 2y\dot{y} = 0.</math>
 
Now introduce the parameter θ, that defines the angular position of M from the vertical directionIt can be used to define the coordinates x and y, such that
:<math> \mathbf{r}=(x, y) = (L\sin\theta, -L\cos\theta).</math>
The use of θ to define the configuration of this system avoids the constraint provided by the equation of the circle.
 
===Virtual work===
Notice that the force of gravity acting on the mass m is formulated in the usual Cartesian coordinates,
:<math> \mathbf{F}=(0,-mg),</math>
where g is the acceleration of gravity.
 
The virtual work of gravity on the mass m as it follows the trajectory '''r''' is given by
:<math> \delta W = \mathbf{F}\cdot\delta \mathbf{r}.</math>
The variation δ'''r''' can be computed in terms of the coordinates x and y, or in terms of the parameter θ,
:<math> \delta \mathbf{r} =(\delta x, \delta y) = (L\cos\theta, L\sin\theta)\delta\theta.</math>
Thus, the virtual work is given by
:<math>\delta W = -mg\delta y = -mgL\sin\theta\delta\theta.</math>
 
Notice that the coefficient of δy is the y-component of the applied forceIn the same way, the coefficient of δθ is known as the [[generalized force]] along generalized coordinate θ, given by
:<math> F_{\theta} = -mgL\sin\theta.</math>
 
===Kinetic energy===
To complete the analysis consider the kinetic energy T of the mass, using the velocity,
:<math> \mathbf{v}=(\dot{x}, \dot{y}) = (L\cos\theta, L\sin\theta)\dot{\theta},</math>
so,
:<math> T= \frac{1}{2} m\mathbf{v}\cdot\mathbf{v} = \frac{1}{2} m (\dot{x}^2+\dot{y}^2) = \frac{1}{2} m L^2\dot{\theta}^2.</math>
 
===Lagrange's equations===
Lagrange's equations for the pendulum in terms of the coordinates x and y are given by,
:<math> \frac{d}{dt}\frac{\partial T}{\partial \dot{x}} - \frac{\partial T}{\partial x} = F_{x} + \lambda \frac{\partial f}{\partial x},\quad \frac{d}{dt}\frac{\partial T}{\partial \dot{y}} - \frac{\partial T}{\partial y} = F_{y} + \lambda \frac{\partial f}{\partial y}</math>
This yields the three equations
:<math>m\ddot{x} = \lambda(2x),\quad m\ddot{y} = -mg + \lambda(2y),\quad x^2+y^2 - L^2=0,</math>
in the three unknowns, x, y and λ.
 
Using the parameter θ, Lagrange's equations take the form
:<math>\frac{d}{dt}\frac{\partial T}{\partial \dot{\theta}} - \frac{\partial T}{\partial \theta} = F_{\theta},</math>
which becomes,
:<math> mL^2\ddot{\theta} = -mgL\sin\theta,</math>
or
:<math> \ddot{\theta} + \frac{g}{L}\sin\theta=0.</math>
This formulation yields one equation because there is a single parameter and no constraint equation.
 
This shows that the parameter θ is a generalized coordinate that can be used in the same way as the Cartesian coordinates x and y to analyze the pendulum.
 
==Example: Double pendulum==
[[File:Double-Pendulum.svg|thumb|right|A double pendulum]]
The benefits of generalized coordinates become apparent with the analysis of a double pendulum.   
For the two masses m<sub>i</sub>, i=1, 2, let '''r<sub>i</sub>'''=(x<sub>i</sub>, y<sub>i</sub>), i=1, 2 define their two trajectories. These vectors satisfy the two constraint equations,
:<math>f_1 (x_1, y_1, x_2, y_2) = \mathbf{r}_1\cdot \mathbf{r}_1 - L_1^2 = 0, \quad f_2 (x_1, y_1, x_2, y_2) = (\mathbf{r}_2-\mathbf{r}_1) \cdot (\mathbf{r}_2-\mathbf{r}_1) - L_2^2 = 0.</math>
The formulation of Lagrange's equations for this system yields six equations in the four Cartesian coordinates x<sub>i</sub>, y<sub>i</sub> i=1, 2 and the two Lagrange multipliers λ<sub>i</sub>, i=1, 2 that arise from the two constraint equations.
 
===Coordinates===
Now introduce the generalized coordinates θ<sub>i</sub> i=1,2 that define the angular position of each mass of the double pendulum from the vertical direction. In this case, we have
:<math>\mathbf{r}_1 = (L_1\sin\theta_1, -L_1\cos\theta_1), \quad \mathbf{r}_2 = (L_1\sin\theta_1, -L_1\cos\theta_1) + (L_2\sin\theta_2, -L_2\cos\theta_2).</math>
 
The force of gravity acting on the masses is given by,
:<math>\mathbf{F}_1=(0,-m_1 g),\quad \mathbf{F}_2=(0,-m_2 g)</math>
where g is the acceleration of gravity. Therefore, the virtual work of gravity on the two masses as they follow the trajectories '''r'''<sub>i</sub>, i=1,2 is given by
:<math> \delta W = \mathbf{F}_1\cdot\delta \mathbf{r}_1 + \mathbf{F}_2\cdot\delta \mathbf{r}_2.</math>
 
The variations δ'''r'''<sub>i</sub> i=1, 2 can be computed to be
:<math> \delta \mathbf{r}_1 = (L_1\cos\theta_1, L_1\sin\theta_1)\delta\theta_1, \quad \delta \mathbf{r}_2 = (L_1\cos\theta_1, L_1\sin\theta_1)\delta\theta_1 +(L_2\cos\theta_2, L_2\sin\theta_2)\delta\theta_2</math>
 
===Virtual work===
Thus, the virtual work is given by
:<math>\delta W = -(m_1+m_2)gL_1\sin\theta_1\delta\theta_1 - m_2gL_2\sin\theta_2\delta\theta_2,</math>
and the generalized forces are
:<math>F_{\theta_1} = -(m_1+m_2)gL\sin\theta_1,\quad F_{\theta_2} = -m_2gL\sin\theta_2.</math>
 
===Kinetic energy===
Compute the kinetic energy of this system to be
:<math> T= \frac{1}{2}m_1 \mathbf{v}_1\cdot\mathbf{v}_1 + \frac{1}{2}m_2 \mathbf{v}_2\cdot\mathbf{v}_2 = \frac{1}{2}(m_1+m_2)L_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2L_2^2\dot{\theta}_2^2 + m_2L_1L_2 \cos(\theta_2-\theta_1)\dot{\theta}_1\dot{\theta}_2.</math>
 
===Lagrange's equations===
Lagrange's equations yield two equations in the unknown generalized coordinates θ<sub>i</sub> i=1, 2, given by<ref>Eric W. Weisstein, [http://scienceworld.wolfram.com/physics/DoublePendulum.html Double Pendulum], scienceworld.wolfram.com. 2007</ref>
:<math>(m_1+m_2)L_1\ddot{\theta}_1+m_2L_1L_2\ddot{\theta}_2\cos(\theta_2-\theta_1) + m_2L_1L_2\sin(\theta_2-\theta_1) = -(m_1+m_2)gL_1\sin\theta_1,</math>
and
:<math>m_2L_2\ddot{\theta}^2+m_2L_1L_2\ddot{\theta}_1\cos(\theta_2-\theta_1) - m_2L_1L_2\sin(\theta_2-\theta_1)=-m_2gL_2\sin\theta_2.</math>
 
The use of the generalized coordinates θ<sub>i</sub> i=1, 2 provides an alternative to the Cartesian formulation of the dynamics of the double pendulum.
 
<!--
Constraints on the velocity system with <math>m</math> [[degrees of freedom (physics and chemistry)|degrees of freedom]] and n particles whose positions are designated with three dimensional vectors, <math>\lbrace \mathbf {r}_i \rbrace</math>, implies the existence of <math>3 n-m</math> scalar constraint equations on those position variables. Such a system can be fully described by the scalar generalized coordinates, <math>\lbrace q_1, q_2, ..., q_m\rbrace</math>, and the time, <math>t</math>, if and only if all <math>m</math> <math>\lbrace q_j \rbrace</math> are independent coordinates. For the system, the transformation from old coordinates to generalized coordinates may be represented as follows:<ref name="Torby1984">{{cite book |last=Torby |first=Bruce |title=Advanced Dynamics for Engineers |series=HRW Series in Mechanical Engineering |year=1984 |publisher=CBS College Publishing |location=United States of America |isbn=0-03-063366-4 |chapter=Energy Methods}}</ref>{{rp|260}}
 
:<math>\mathbf{r}_1=\mathbf{r}_1(q_1, q_2, ..., q_m, t)</math>,
:<math>\mathbf{r}_2=\mathbf{r}_2(q_1, q_2, ..., q_m, t)</math>, ...
:<math>\mathbf{r}_n=\mathbf{r}_n(q_1, q_2, ..., q_m, t)</math>.
 
This transformation affords the flexibility in dealing with complex systems to use the most convenient and not necessarily [[inertial]] coordinates. These equations are used to construct differentials when considering [[virtual displacement]]s and [[generalized forces]].
-->
<!--These examples do not help explain generalized coordinates
==Examples==
=== Double pendulum ===
[[File:Double-Pendulum.svg|thumb|right|A double pendulum]]
A [[double pendulum]] constrained to move in a plane may be described by the four [[Cartesian coordinates]] {''x''<sub>1</sub>, ''y''<sub>1</sub>, ''x''<sub>2</sub>, ''y''<sub>2</sub>}, but the system only has two [[degrees of freedom (mechanics)|degrees of freedom]], and a more efficient system would be to use
:<math>\lbrace q_1, q_2 \rbrace = \lbrace\theta_1,\theta_2 \rbrace</math>,
which are defined via the following relations:
:<math>\lbrace x_1, y_1 \rbrace = \lbrace L_1\sin\theta_1,  L_1\cos\theta_1 \rbrace</math>
:<math>\lbrace x_2, y_2 \rbrace = \lbrace L_1\sin\theta_1+L_2\sin\theta_2,  L_1\cos\theta_1+L_2\cos\theta_2 \rbrace</math>
 
=== Example: Bead on a wire ===
A bead constrained to move on a wire has only one degree of freedom, and the generalized coordinate used to describe its motion is often
:<math>q_1= l</math>,
where ''l'' is the distance along the wire from some reference point on the wire. Notice that a motion embedded in three dimensions has been reduced to only one dimension.
 
=== Motion on a surface ===
A point mass constrained to a surface has two degrees of freedom, even though its motion is embedded in three dimensions. If the surface is a sphere, a good choice of coordinates would be:
:<math>\lbrace q_1, q_2 \rbrace = \lbrace \theta, \phi \rbrace </math>,
where θ and φ are the angle coordinates familiar from [[spherical coordinates]]The ''r'' coordinate has been effectively dropped, as a particle moving on a sphere maintains a constant radius.
-->
<!--
==Generalized velocities and kinetic energy==
Each generalized coordinate <math>q_i</math> is associated with a generalized velocity <math>\dot q_i</math>, defined as:
:<math>\dot q_i={dq_i \over dt}</math>
The kinetic energy of a particle is
:<math>T = \frac {m}{2} \left ( \dot x^2 + \dot y^2 + \dot z^2 \right )</math>.
In more general terms, for a system of <math>p</math> particles with <math>n</math> degrees of freedom, this may be written
:<math>T =\sum_{i=1} ^p \frac {m_i}{2} \left ( \dot x_i^2 + \dot y_i^2 + \dot z_i^2 \right )</math>.
If the transformation equations between the Cartesian and generalized coordinates
:<math>x_i = x_i \left (q_1, q_2, ..., q_n, t \right )</math>
:<math>y_i = y_i \left (q_1, q_2, ..., q_n, t \right )</math>
:<math>z_i = z_i \left (q_1, q_2, ..., q_n, t \right )</math>
are known, then these equations may be differentiated to provide the time-derivatives to use in the above kinetic energy equation:
:<math>\dot x_i = \frac {d}{dt} x_i \left (q_1, q_2, ..., q_n, t \right ).</math>
It is important to remember that the kinetic energy must be measured relative to inertial coordinates. If the above method is used, it means only that the Cartesian coordinates need to be [[inertial]], even though the generalized coordinates need not beThis is another considerable convenience of the use of generalized coordinates.
-->
<!--this section is vague. It has been replaced by the following section
==Applications of generalized coordinates==
Such coordinates are helpful principally in [[Lagrangian mechanics]], where the forms of the principal equations describing the motion of the system are unchanged by a shift to generalized coordinates from any other coordinate system.
The amount of [[virtual work]] done along any coordinate <math>q_i</math> is given by:
:<math>\delta W_{q_i} = F_{q_i} \cdot \delta q_i </math>, </center>
where <math>F_{q_i}</math> is the generalized force in the <math>q_i</math> direction. While the generalized force is difficult to construct 'a priori', it may be quickly derived by determining the amount of work that would be done by all non-constraint forces if the system underwent a [[virtual displacement]] of <math>\delta q_i </math>, with all other generalized coordinates and time held fixed. This will take the form:
:<math>\delta W_{q_i} = f \left ( q_1, q_2, ..., q_n \right ) \cdot \delta q_i </math>,
and the generalized force may then be calculated:
:<math>F_{q_i} = \frac {\delta W_{q_i}}{\delta q_i} = f \left ( q_1, q_2, ..., q_n \right ) </math>.
-->
 
==Generalized coordinates and virtual work==
The ''principle of virtual work'' states that if a system is in static equilibrium, the virtual work of the applied forces is zero for all virtual movements of the system from this state, that is, δW=0 for any variation δ'''r'''.<ref name="Torby1984">{{cite book |last=Torby |first=Bruce |title=Advanced Dynamics for Engineers |series=HRW Series in Mechanical Engineering |year=1984 |publisher=CBS College Publishing |location=United States of America |isbn=0-03-063366-4 |chapter=Energy Methods}}</ref> When formulated in terms of generalized coordinates, this is equivalent to the requirement that the generalized forces for any virtual displacement are zero, that is ''F''<sub>i</sub>=0.
 
Let the forces on the system be '''F'''<sub>j</sub>, ''j=1, ..., m'' be applied to points with Cartesian coordinates '''r'''<sub>j</sub>, j=1,..., m, then the virtual work generated by a virtual displacement from the equilibrium position is given by
:<math>\delta W = \sum_{j=1}^m \mathbf{F}_j\cdot \delta\mathbf{r}_j.</math>
where δ'''r'''<sub>j</sub>, ''j=1, ..., m'' denote the virtual displacements of each point in the body.
 
Now assume that each δ'''r'''<sub>j</sub> depends on the generalized coordinates ''q''<sub>i</sub>, ''i=1, ..., n'', then
:<math> \delta \mathbf{r}_j = \frac{\partial \mathbf{r}_j}{\partial q_1} \delta{q}_1 + \ldots + \frac{\partial \mathbf{r}_j}{\partial q_n} \delta{q}_n,</math>
and
:<math> \delta W = \left(\sum_{j=1}^m \mathbf{F}_j\cdot \frac{\partial \mathbf{r}_j}{\partial q_1}\right) \delta{q}_1 + \ldots + \left(\sum_{j=1}^m \mathbf{F}_j\cdot \frac{\partial \mathbf{r}_j}{\partial q_n}\right) \delta{q}_n. </math>
 
The ''n'' terms
:<math> F_i = \sum_{j=1}^m \mathbf{F}_j\cdot \frac{\partial \mathbf{r}_j}{\partial q_i},\quad i=1,\ldots, n,</math>
are the generalized forces acting on the system.  Kane<ref>T. R. Kane and D. A. Levinson, Dynamics: theory and applications, McGraw-Hill, New York, 1985</ref> shows that these generalized forces can also be formulated in terms of the ratio of time derivatives,
:<math> F_i = \sum_{j=1}^m \mathbf{F}_j\cdot \frac{\partial \mathbf{v}_j}{\partial \dot{q}_i},\quad i=1,\ldots, n,</math>
where '''v'''<sub>j</sub> is the velocity of the point of application of the force '''F'''<sub>j</sub>.
 
In order for the virtual work to be zero for an arbitrary virtual  displacement, each of the generalized forces must be zero, that is
:<math> \delta W = 0 \quad \Rightarrow \quad F_i =0, i=1,\ldots, n.</math>
 
==See also==
*[[Hamiltonian mechanics]]
*[[Virtual work]]
*[[Orthogonal coordinates]]
*[[Curvilinear coordinates]]
* [[Frenet-Serret formulas]]
*[[Mass matrix]]
*[[Stiffness matrix]]
*[[Generalized forces]]
 
==References==
<references/>
<!--
*{{cite book
| last = Greenwood
| first = Donald T.
| year = 1987
| title = Principles of Dynamics
| edition = 2nd edition
| publisher = Prentice Hall
| isbn = 0-13-709981-9
}}
*{{cite book
| last = Wells
| first = D. A.
| year = 1967
| title = Schaum's Outline of Lagrangian Dynamics
| location = New York
| publisher = McGraw-Hill
 
}}
-->
 
[[Category:Lagrangian mechanics| ]]
[[Category:Dynamical systems]]
[[Category:Rigid bodies]]

Revision as of 22:58, 28 January 2014

Template:Classical mechanics

In analytical mechanics, specifically the study of the rigid body dynamics of multibody systems, the term generalized coordinates refers to the parameters that describe the configuration of the system relative to some reference configuration. These parameters must uniquely define the configuration of the system relative to the reference configuration.[1] The generalized velocities are the time derivatives of the generalized coordinates of the system.

An example of a generalized coordinate is the angle that locates a point moving on a circle. The adjective "generalized" distinguishes these parameters from the traditional use of the term coordinate to refer to Cartesian coordinates: for example, describing the location of the point on the circle using x and y coordinates.

Although there may be many choices for generalized coordinates for a physical system, parameters are usually selected which are convenient for the specification of the configuration of the system and which make the solution of its equations of motion easier. If these parameters are independent of one another, then number of independent generalized coordinates is defined by the number of degrees of freedom of the system.[2] [3]

Constraint equations

File:Generalized coordinates 1df.svg
Generalized coordinates for one degree of freedom (of a particle moving in a complicated path). Instead of using all three Cartesian coordinates x, y, z (or other standard coordinate systems), only one is needed and is completely arbitrary to define the position. Four possibilities are shown. Top: distances along some fixed line, bottom left: an angle relative to some baseline, bottom right: the arc length of the path the particle takes. All are defined relative to a zero position - again arbitrarily defined.

Generalized coordinates are usually selected to provide the minimum number of independent coordinates that define the configuration of a system, which simplifies the formulation of Lagrange's equations of motion. However, it can also occur that a useful set of generalized coordinates may be dependent, which means that they are related by one or more constraint equations.

Holonomic constraints

If the constraints introduce relations between the generalized coordinates qi, i=1,..., n and time, of the form,

are called holonomic.[1] These constraint equations define a manifold in the space of generalized coordinates qi, i=1,...,n, known as the configuration manifold of the system. The degree of freedom of the system is d=n-k, which is the number of generalized coordinates minus the number of constraints.[4]Primarily based on the most recent URA personal property value index (PPPI) flash estimates, we know that the PPPI, which represents the overall real property price development, has dipped in 2013Q4. That is the first dip the market has seen within the final 2 years.

To give you some perspective, the entire number of personal properties in Singapore (together with govt condominiums) is 297,689 in 2013Q3. Primarily based on the projection that there will be 19,302 units accomplished in 2014, the rise in residential models works out to be more than 6%. With a lot New Ec Launch Singapore provide, buyers might be spoilt for alternative and this in flip will lead to their reluctance to pay a premium for potential models. The complete textual content of the Copyright Act (Cap sixty three) and different statutes regarding IPR might be found on the Singapore Statutes Online Website online The Group's income jumped forty.1 p.c to $324.5 million from $231.6 million in FY 2013, lifted by increased development income and sales of growth properties in Singapore and China. Actual Estate Shopping for

One factor we've on this nation is a big group of "economists," and "market analysts." What's interesting about this group of real property market-watchers is that there are two very other ways wherein they predict Boomers will affect housing markets over the subsequent decade. Let's check out those two opposites and see how every can change the best way real property investors strategy their markets. The good news is that actual property buyers are prepared for either state of affairs, and there's profit in being ready. I'm excited and searching ahead to the alternatives both or each of these conditions will supply; thank you Boomers! Mapletree to further broaden past Asia Why fortune will favour the brave in Asia's closing real property frontier

The story of the 23.2 home begins with a stack of Douglas fir beams salvaged from varied demolished warehouses owned by the consumer's household for a number of generations. Design and structure innovator Omer Arbel, configured them to type a triangulated roof, which makes up one of the placing features of the home. The transient from the entrepreneur-proprietor was not solely to design a house that integrates antique wood beams, however one which erases the excellence between inside and exterior. Built on a gentle slope on a large rural acreage surrounded by two masses of previous-development forests, the indoors movement seamlessly to the outdoors and, from the within looking, one enjoys unobstructed views of the existing natural panorama which is preserved

First, there are typically extra rental transactions than gross sales transactions, to permit AV to be decided for each property primarily based on comparable properties. Second, movements in sale costs are more unstable than leases. Hence, utilizing rental transactions to derive the AV helps to maintain property tax more steady for property homeowners. If you're buying or trying to lease a property. It's tiring to call up individual property agent, organize appointments, coordinate timing and to go for particular person property viewing. What most individuals do is to have a property agent representing them who will arrange and coordinate the viewings for all the properties out there based mostly on your necessities & most well-liked timing. Rent Property District 12 Rent Property District thirteen

The Annual Worth of a property is mostly derived based mostly on the estimated annual hire that it may well fetch if it have been rented out. In determining the Annual Worth of a property, IRAS will think about the leases of similar properties within the vicinity, dimension and condition of the property, and different relevant components. The Annual Worth of a property is determined in the identical method regardless of whether the property is let-out, proprietor-occupied or vacant. The Annual Worth of land is determined at 5% of the market price of the land. When a constructing is demolished, the Annual Worth of the land is assessed by this method. Property Tax on Residential Properties Buyer Stamp Responsibility on Buy of Properties – Business and residential properties Rent House District 01

Within the event the Bank's valuation is decrease than the acquisition price, the purchaser has to pay the distinction between the purchase value and the Bank's valuation utilizing money. As such, the money required up-front might be increased so it's at all times essential to know the valuation of the property before making any offer. Appoint Lawyer The Bank will prepare for a proper valuation of the property by way of physical inspection The completion statement will present you the balance of the acquisition price that you must pay after deducting any deposit, pro-rated property tax and utility costs, upkeep prices, and different relevant expenses in addition to any fees payable to the agent and the lawyer. Stamp Responsibility Primarily based on the Purchase Price or Market Value, whichever is larger

It can be advantageous to choose independent generalized coordinates, as is done in Lagrangian mechanics, because this eliminates the need for constraint equations. However, in some situations, it is not possible to identify an unconstrained set. For example, when dealing with nonholonomic constraints or when trying to find the force due to any constraint—holonomic or not, dependent generalized coordinates must be employed. Sometimes independent generalized coordinates are called internal coordinates because they are mutually independent, otherwise unconstrained, and together give the position of the system.

Top: one degree of freedom, bottom: two degrees of freedom, left: an open curve F (parameterized by t) and surface F, right: a closed curve C and closed surface S. The equations shown are the constraint equations. Generalized coordinates are chosen and defined with respect to these curves (one per degree of freedom), and simplify the analysis since even complicated curves are described by the minimum number of coordinates required.

Non-holonomic constraints

A mechanical system can involve constraints on both the generalized coordinates and their derivatives. Constraints of this type are known as non-holonomic, and have the form

An example of a non-holonomic constraint is a rolling wheel or knife-edge that constrains the direction of the velocity vector.

Example: Simple pendulum

Dynamic model of a simple pendulum.

The relationship between the use of generalized coordinates and Cartesian coordinates to characterize the movement of a mechanical system can be illustrated by considering the constrained dynamics of a simple pendulum.[5][6]

Coordinates

A simple pendulum consists of a mass M hanging from a pivot point so that it is constrained to move on a circle of radius L. The position of the mass is defined by the coordinate vector r=(x, y) measured in the plane of the circle such that y is in the vertical direction. The coordinates x and y are related by the equation of the circle

that constrains the movement of M. This equation also provides a constraint on the velocity components,

Now introduce the parameter θ, that defines the angular position of M from the vertical direction. It can be used to define the coordinates x and y, such that

The use of θ to define the configuration of this system avoids the constraint provided by the equation of the circle.

Virtual work

Notice that the force of gravity acting on the mass m is formulated in the usual Cartesian coordinates,

where g is the acceleration of gravity.

The virtual work of gravity on the mass m as it follows the trajectory r is given by

The variation δr can be computed in terms of the coordinates x and y, or in terms of the parameter θ,

Thus, the virtual work is given by

Notice that the coefficient of δy is the y-component of the applied force. In the same way, the coefficient of δθ is known as the generalized force along generalized coordinate θ, given by

Kinetic energy

To complete the analysis consider the kinetic energy T of the mass, using the velocity,

so,

Lagrange's equations

Lagrange's equations for the pendulum in terms of the coordinates x and y are given by,

This yields the three equations

in the three unknowns, x, y and λ.

Using the parameter θ, Lagrange's equations take the form

which becomes,

or

This formulation yields one equation because there is a single parameter and no constraint equation.

This shows that the parameter θ is a generalized coordinate that can be used in the same way as the Cartesian coordinates x and y to analyze the pendulum.

Example: Double pendulum

A double pendulum

The benefits of generalized coordinates become apparent with the analysis of a double pendulum. For the two masses mi, i=1, 2, let ri=(xi, yi), i=1, 2 define their two trajectories. These vectors satisfy the two constraint equations,

The formulation of Lagrange's equations for this system yields six equations in the four Cartesian coordinates xi, yi i=1, 2 and the two Lagrange multipliers λi, i=1, 2 that arise from the two constraint equations.

Coordinates

Now introduce the generalized coordinates θi i=1,2 that define the angular position of each mass of the double pendulum from the vertical direction. In this case, we have

The force of gravity acting on the masses is given by,

where g is the acceleration of gravity. Therefore, the virtual work of gravity on the two masses as they follow the trajectories ri, i=1,2 is given by

The variations δri i=1, 2 can be computed to be

Virtual work

Thus, the virtual work is given by

and the generalized forces are

Kinetic energy

Compute the kinetic energy of this system to be

Lagrange's equations

Lagrange's equations yield two equations in the unknown generalized coordinates θi i=1, 2, given by[7]

and

The use of the generalized coordinates θi i=1, 2 provides an alternative to the Cartesian formulation of the dynamics of the double pendulum.


Generalized coordinates and virtual work

The principle of virtual work states that if a system is in static equilibrium, the virtual work of the applied forces is zero for all virtual movements of the system from this state, that is, δW=0 for any variation δr.[4] When formulated in terms of generalized coordinates, this is equivalent to the requirement that the generalized forces for any virtual displacement are zero, that is Fi=0.

Let the forces on the system be Fj, j=1, ..., m be applied to points with Cartesian coordinates rj, j=1,..., m, then the virtual work generated by a virtual displacement from the equilibrium position is given by

where δrj, j=1, ..., m denote the virtual displacements of each point in the body.

Now assume that each δrj depends on the generalized coordinates qi, i=1, ..., n, then

and

The n terms

are the generalized forces acting on the system. Kane[8] shows that these generalized forces can also be formulated in terms of the ratio of time derivatives,

where vj is the velocity of the point of application of the force Fj.

In order for the virtual work to be zero for an arbitrary virtual displacement, each of the generalized forces must be zero, that is

See also

References

  1. 1.0 1.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  3. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  4. 4.0 4.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  5. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  6. Richard Fitzpatrick, Newtonian Dynamics, http://farside.ph.utexas.edu/teaching/336k/Newton/Newtonhtml.html.
  7. Eric W. Weisstein, Double Pendulum, scienceworld.wolfram.com. 2007
  8. T. R. Kane and D. A. Levinson, Dynamics: theory and applications, McGraw-Hill, New York, 1985