Antisymmetric tensor

From formulasearchengine
Jump to navigation Jump to search

In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged.[1][2] The index subset must generally either be all covariant or all contravariant.

For example,

holds when the tensor is antisymmetric on it first three indices.

If a tensor changes sign under exchange of any pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor of order p may be referred to as a p-form, and a completely antisymmetric contravariant tensor may be referred to as a p-vector.

Antisymmetric and symmetric tensors

A tensor A that is antisymmetric on indices i and j has the property that the contraction with a tensor B that is symmetric on indices i and j is identically 0.

For a general tensor U with components and a pair of indices i and j, U has symmetric and antisymmetric parts defined as:

  (symmetric part)
  (antisymmetric part).

Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in

Notation

A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M,

and for an order 3 covariant tensor T,

In any number of dimensions, these are equivalent to

More generally, irrespective of the number of dimensions, antisymmetrization over p indices may be expressed as

In the above,

is the generalized Kronecker delta of the appropriate order.

Examples

Antisymmetric tensors include:

See also

References

  1. {{#invoke:citation/CS1|citation |CitationClass=book }}
  2. {{#invoke:citation/CS1|citation |CitationClass=book }} section §7.
  • {{#invoke:citation/CS1|citation

|CitationClass=book }}

  • {{#invoke:citation/CS1|citation

|CitationClass=book }}

External links

  • [1] - mathworld, wolfram

Template:Tensors