# Continued fraction

In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on.[1] In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers Template:Mvar are called the coefficients or terms of the continued fraction.[2]

Continued fractions have a number of remarkable properties related to the Euclidean algorithm for integers or real numbers. Every rational number {{ safesubst:#invoke:Unsubst||$B=p/q}} has two closely related expressions as a finite continued fraction, whose coefficients Template:Mvar can be determined by applying the Euclidean algorithm to (p, q). The numerical value of an infinite continued fraction will be irrational; it is defined from its infinite sequence of integers as the limit of a sequence of values for finite continued fractions. Each finite continued fraction of the sequence is obtained by using a finite prefix of the infinite continued fraction's defining sequence of integers. Moreover, every irrational number Template:Mvar is the value of a unique infinite continued fraction, whose coefficients can be found using the non-terminating version of the Euclidean algorithm applied to the incommensurable values Template:Mvar and 1. This way of expressing real numbers (rational and irrational) is called their continued fraction representation. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is necessary to distinguish the first form from generalized continued fractions, the former may be called a simple or regular continued fraction, or said to be in canonical form. The term continued fraction may also refer to representations of rational functions, arising in their analytic theory. For this use of the term see Padé approximation and Chebyshev rational functions. ## Motivation and notation Consider a typical rational number {{ safesubst:#invoke:Unsubst||$B=415/93}}, which is around 4.4624.

As a first approximation, start with 4, which is the integer part; {{ safesubst:#invoke:Unsubst||$B=415/93}} = 4 + {{ safesubst:#invoke:Unsubst||$B=43/93}}.

Note that the fractional part is the reciprocal of {{ safesubst:#invoke:Unsubst||$B=93/43}} which is about 2.1628. Use the integer part, 2, as an approximation for the reciprocal, to get a second approximation of 4 + {{ safesubst:#invoke:Unsubst||$B=1/2}} = 4.5; {{ safesubst:#invoke:Unsubst||$B=93/43}} = 2 + {{ safesubst:#invoke:Unsubst||$B=7/43}}.

The fractional part of {{ safesubst:#invoke:Unsubst||$B=93/43}} is the reciprocal of {{ safesubst:#invoke:Unsubst||$B=43/7}}, and {{ safesubst:#invoke:Unsubst||$B=43/7}} is around 6.1429. Use 6 as an approximation for this to get 2 + {{ safesubst:#invoke:Unsubst||$B=1/6}} as an approximation for {{ safesubst:#invoke:Unsubst||$B=93/43}} and 4 + {{ safesubst:#invoke:Unsubst||$B=1/2 + {{ safesubst:#invoke:Unsubst||$B=1/6}} }}, about 4.4615, as the third approximation; {{ safesubst:#invoke:Unsubst||$B=43/7}} = 6 + {{ safesubst:#invoke:Unsubst||$B=1/7 }}. Finally, the fractional part of {{ safesubst:#invoke:Unsubst||$B=43/7}} is the reciprocal of 7, so its approximation in this scheme, 7, is exact ({{ safesubst:#invoke:Unsubst||$B=7/1}} = 7 + {{ safesubst:#invoke:Unsubst||$B=0/1}}) and produces the exact expression 4 + {{ safesubst:#invoke:Unsubst||$B=1/2 + {{ safesubst:#invoke:Unsubst||$B=1/6 + (1 / 7)}}}} for {{ safesubst:#invoke:Unsubst||$B=415/93}}. This expression is called the continued fraction representation of the number. Dropping some of the less essential parts of the expression 4 + {{ safesubst:#invoke:Unsubst||$B=1/2 + {{ safesubst:#invoke:Unsubst||$B=1/6 + (1 / 7)}}}} gives the abbreviated notation {{ safesubst:#invoke:Unsubst||$B=415/93}}=[4;2,6,7]. Note that it is customary to replace only the first comma by a semicolon. Some older textbooks use all commas in the (n+1)-tuple, e.g. [4,2,6,7].[3][4]

If the starting number is rational then this process exactly parallels the Euclidean algorithm. In particular, it must terminate and produce a finite continued fraction representation of the number. If the starting number is irrational then the process continues indefinitely. This produces a sequence of approximations, all of which are rational numbers, and these converge to the starting number as a limit. This is the (infinite) continued fraction representation of the number. Examples of continued fraction representations of irrational numbers are:

• Template:Sqrt = [4;2,1,3,1,2,8,2,1,3,1,2,8,…] (sequence A010124 in OEIS). The pattern repeats indefinitely with a period of 6.
• e = [2;1,2,1,1,4,1,1,6,1,1,8,…] (sequence A003417 in OEIS). The pattern repeats indefinitely with a period of 3 except that 2 is added to one of the terms in each cycle.
• π = [3;7,15,1,292,1,1,1,2,1,3,1,…] (sequence A001203 in OEIS). The terms in this representation are apparently random.
• ϕ = [1;1,1,1,1,1,1,1,1,1,1,1,…] (sequence A000012 in OEIS). The golden ratio, the most difficult irrational number to approximate rationally. See: A property of the golden ratio φ.

Continued fractions are, in some ways, more "mathematically natural" representations of a real number than other representations such as decimal representations, and they have several desirable properties:

• The continued fraction representation for a rational number is finite and only rational numbers have finite representations. In contrast, the decimal representation of a rational number may be finite, for example {{ safesubst:#invoke:Unsubst||$B=137/1600}} = 0.085625, or infinite with a repeating cycle, for example {{ safesubst:#invoke:Unsubst||$B=4/27}} = 0.148148148148….
• Every rational number has an essentially unique continued fraction representation. Each rational can be represented in exactly two ways, since [[[:Template:Mvar]]0;Template:Mvar1,… Template:MvarTemplate:Mvar−1,Template:MvarTemplate:Mvar] = [[[:Template:Mvar]]0;Template:Mvar1,… Template:MvarTemplate:Mvar−1,(Template:MvarTemplate:Mvar−1),1]. Usually the first, shorter one is chosen as the canonical representation.
• The continued fraction representation of an irrational number is unique.
• The real numbers whose continued fraction eventually repeats are precisely the quadratic irrationals.[5] For example, the repeating continued fraction [1;1,1,1,…] is the golden ratio, and the repeating continued fraction [1;2,2,2,…] is the square root of 2. In contrast, the decimal representations of quadratic irrationals are apparently random. The square roots of all (positive) integers, that are not perfect squares, are quadratic irrationals, hence are unique periodic continued fractions.
• The successive approximations generated in finding the continued fraction representation of a number, i.e. by truncating the continued fraction representation, are in a certain sense (described below) the "best possible".

## Basic formula

A continued fraction is an expression of the form

${\displaystyle a_{0}+{\cfrac {b_{1}}{a_{1}+{\cfrac {b_{2}}{a_{2}+{\cfrac {b_{3}}{a_{3}+\ddots }}}}}}}$

where ai, and bi are either rational numbers, real numbers, or complex numbers. If bi = 1 for all i the expression is called a simple continued fraction. If the expression contains a finite number of terms it is called a finite continued fraction. If the expression contains an infinite number of terms it is called an infinite continued fraction. [6]

Thus, all of the following illustrate valid finite simple continued fractions:

Examples of finite simple continued fractions
Formula Numeric Remarks
${\displaystyle \ a_{0}}$ ${\displaystyle \ 2}$ All integers are a degenerate case
${\displaystyle \ a_{0}+{\cfrac {1}{a_{1}}}}$ ${\displaystyle \ 2+{\cfrac {1}{3}}}$ Simplest possible fractional form
${\displaystyle \ a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}}}}}}$ ${\displaystyle \ -3+{\cfrac {1}{2+{\cfrac {1}{18}}}}}$ First integer may be negative
${\displaystyle \ a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}}}}}}}}$ ${\displaystyle \ {\cfrac {1}{15+{\cfrac {1}{1+{\cfrac {1}{102}}}}}}}$ First integer may be zero

## Calculating continued fraction representations

Consider a real number Template:Mvar. Let Template:Mvar be the integer part and Template:Mvar the fractional part of Template:Mvar. Then the continued fraction representation of Template:Mvar is [[[:Template:Mvar]];Template:Mvar1,Template:Mvar2,…], where [[[:Template:Mvar]]1;Template:Mvar2,…] is the continued fraction representation of 1/Template:Mvar.

To calculate a continued fraction representation of a number Template:Mvar, write down the integer part (technically the floor) of Template:Mvar. Subtract this integer part from Template:Mvar. If the difference is 0, stop; otherwise find the reciprocal of the difference and repeat. The procedure will halt if and only if Template:Mvar is rational. This process can be efficiently implemented using the Euclidean algorithm when the number is rational.

Find the continued fraction for 3.245 (= 3{{ safesubst:#invoke:Unsubst $B=49/200}}) Step Real Number Integer part Fractional part Simplified Reciprocal of Template:Mvar Simplified 1 Template:Mvar = 3{{ safesubst:#invoke:Unsubst$B=49/200}} Template:Mvar = 3 Template:Mvar = 3{{ safesubst:#invoke:Unsubst $B=49/200}} − 3 = {{ safesubst:#invoke:Unsubst$B=49/200}} 1/Template:Mvar = {{ safesubst:#invoke:Unsubst $B=200/49}} = 4{{ safesubst:#invoke:Unsubst$B=4/49}}
2 Template:Mvar = 4{{ safesubst:#invoke:Unsubst $B=4/49}} Template:Mvar = 4 Template:Mvar = 4{{ safesubst:#invoke:Unsubst$B=4/49}} − 4 = {{ safesubst:#invoke:Unsubst $B=4/49}} 1/Template:Mvar = {{ safesubst:#invoke:Unsubst$B=49/4}} = 12{{ safesubst:#invoke:Unsubst $B=1/4}} 3 Template:Mvar = 12{{ safesubst:#invoke:Unsubst$B=1/4}} Template:Mvar = 12 Template:Mvar = 12{{ safesubst:#invoke:Unsubst $B=1/4}} − 12 = {{ safesubst:#invoke:Unsubst$B=1/4}} 1/Template:Mvar = {{ safesubst:#invoke:Unsubst $B=4/1}} = 4 4 Template:Mvar = 4 Template:Mvar = 4 Template:Mvar = 4 − 4 = 0 STOP Continued fraction form for 3.245 or 3{{ safesubst:#invoke:Unsubst$B=49/200}} is [3; 4, 12, 4].
Template:Bigmath

The number 3.245 can also be represented by the continued fraction expansion [3;4,12,3,1]; refer to Finite continued fractions below.

## Notations for continued fractions

The integers a0, a1 etc., are called the coefficients or terms of the continued fraction.[2] One can abbreviate the continued fraction

${\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}}}}}}}}$

in the notation of Carl Friedrich Gauss

${\displaystyle x=a_{0}+{\underset {i=1}{\overset {3}{\mathrm {K} }}}~{\frac {1}{a_{i}}}\;}$

or as

${\displaystyle x=[a_{0};a_{1},a_{2},a_{3}]\;}$,

or in the notation of Pringsheim as

${\displaystyle x=a_{0}+{\frac {1\mid }{\mid a_{1}}}+{\frac {1\mid }{\mid a_{2}}}+{\frac {1\mid }{\mid a_{3}}},}$

or in another related notation as

${\displaystyle x=a_{0}+{1 \over a_{1}+{}}{1 \over a_{2}+{}}{1 \over a_{3}+{}}.}$

Sometimes angle brackets are used, like this:

${\displaystyle x=\left\langle a_{0};a_{1},a_{2},a_{3}\right\rangle .}$

The semicolon in the square and angle bracket notations is sometimes replaced by a comma.[3][4]

One may also define infinite simple continued fractions as limits:

${\displaystyle [a_{0};a_{1},a_{2},a_{3},\,\ldots ]=\lim _{n\to \infty }[a_{0};a_{1},a_{2},\,\ldots ,a_{n}].}$

This limit exists for any choice of a0 and positive integers a1a2, ... .

## Finite continued fractions

Every finite continued fraction represents a rational number, and every rational number can be represented in precisely two different ways as a finite continued fraction, with the conditions that the first coefficient is an integer and other coefficients being positive integers. These two representations agree except in their final terms. In the longer representation the final term in the continued fraction is 1; the shorter representation drops the final 1, but increases the new final term by 1. The final element in the short representation is therefore always greater than 1, if present. In symbols:

[a0; a1, a2, …, an − 1, an, 1] = [a0; a1, a2, …, an − 1, an + 1].
[a0; 1] = [a0 + 1].

For example,

2.25 = 2 + {{ safesubst:#invoke:Unsubst||$B=1/4}} = [2; 4] = 2 + {{ safesubst:#invoke:Unsubst||$B=1/3 + 1/1}} = [2; 3, 1]
−4.2 = −5 + {{ safesubst:#invoke:Unsubst||$B=4/5}} = −5 + {{ safesubst:#invoke:Unsubst||$B=1/1 + 1/4}} = [−5; 1, 4] = −5 + {{ safesubst:#invoke:Unsubst||$B=1/1 + {{ safesubst:#invoke:Unsubst||$B=1/3 + 1/1}}}} = [−5; 1, 3, 1].

## Continued fractions of reciprocals

The continued fraction representations of a positive rational number and its reciprocal are identical except for a shift one place left or right depending on whether the number is less than or greater than one respectively. In other words, the numbers represented by [a0; a1, a2, …, an] and [0; a0, a1, …, an] are reciprocals. This is because if Template:Mvar is an integer then if x < 1 then x = 0 + {{ safesubst:#invoke:Unsubst||$B=1/a + 1/b}} and {{ safesubst:#invoke:Unsubst||$B=1/x}} = a + {{ safesubst:#invoke:Unsubst||$B=1/b}} and if x > 1 then x = a + {{ safesubst:#invoke:Unsubst||$B=1/b}} and {{ safesubst:#invoke:Unsubst||$B=1/x}} = 0 + {{ safesubst:#invoke:Unsubst||$B=1/a + 1/b}} with the last number that generates the remainder of the continued fraction being the same for both Template:Mvar and its reciprocal.

For example,

2.25 = {{ safesubst:#invoke:Unsubst||$B=9/4}} = [2; 4], {{ safesubst:#invoke:Unsubst||$B=1/2.25}} = {{ safesubst:#invoke:Unsubst||$B=4/9}} = [0; 2, 4]. ## Infinite continued fractions Every infinite continued fraction is irrational, and every irrational number can be represented in precisely one way as an infinite continued fraction. An infinite continued fraction representation for an irrational number is useful because its initial segments provide rational approximations to the number. These rational numbers are called the convergents of the continued fraction. The larger a term is in the continued fraction, the closer the corresponding convergent is to the irrational number being approximated. Numbers like π have occasional large terms in their continued fraction, which makes them easy to approximate with rational numbers. Other numbers like e have only small terms early in their continued fraction, which makes them more difficult to approximate rationally. The golden ratio ϕ has terms equal to 1 everywhere—the smallest values possible—which makes ϕ the most difficult number to approximate rationally. In this sense, therefore, it is the "most irrational" of all irrational numbers. Even-numbered convergents are smaller than the original number, while odd-numbered ones are larger. For a continued fraction [a0; a1, a2, …], the first four convergents (numbered 0 through 3) are Template:Bigmath In words, the numerator of the third convergent is formed by multiplying the numerator of the second convergent by the third quotient, and adding the numerator of the first convergent. The denominators are formed similarly. Therefore, each convergent can be expressed explicitly in terms of the continued fraction as the ratio of certain multivariate polynomials called continuants. If successive convergents are found, with numerators Template:Mvar1, Template:Mvar2, … and denominators Template:Mvar1, Template:Mvar2, … then the relevant recursive relation is: hn = anhn − 1 + hn − 2, kn = ankn − 1 + kn − 2. The successive convergents are given by the formula Template:Bigmath Thus to incorporate a new term into a rational approximation, only the two previous convergents are necessary. The initial "convergents" (required for the first two terms) are 01 and 10. For example, here are the convergents for [0;1,5,2,2].  Template:Mvar −2 −1 0 1 2 3 4 an 0 1 5 2 2 hn 0 1 0 1 5 11 27 kn 1 0 1 1 6 13 32 When using the Babylonian method to generate successive approximations to the square root of an integer, if one starts with the lowest integer as first approximant, the rationals generated all appear in the list of convergents for the continued fraction. Specifically, the approximants will appear on the convergents list in positions 0, 1, 3, 7, 15, … , 2k−1, ... For example, the continued fraction expansion for [[square root of 3|Template:Sqrt]] is [1;1,2,1,2,1,2,1,2,…]. Comparing the convergents with the approximants derived from the Babylonian method:  Template:Mvar −2 −1 0 1 2 3 4 5 6 7 an 1 1 2 1 2 1 2 1 hn 0 1 1 2 5 7 19 26 71 97 kn 1 0 1 1 3 4 11 15 41 56 x0 = 1 = {{ safesubst:#invoke:Unsubst||$B=1/1}}
x1 = {{ safesubst:#invoke:Unsubst||$B=1/2}}(1 + {{ safesubst:#invoke:Unsubst||$B=3/1}}) = {{ safesubst:#invoke:Unsubst||$B=2/1}} = 2 x2 = {{ safesubst:#invoke:Unsubst||$B=1/2}}(2 + {{ safesubst:#invoke:Unsubst||$B=3/2}}) = {{ safesubst:#invoke:Unsubst||$B=7/4}}
x3 = {{ safesubst:#invoke:Unsubst||$B=1/2}}({{ safesubst:#invoke:Unsubst||$B=7/4}} + {{ safesubst:#invoke:Unsubst||$B=3/{{ safesubst:#invoke:Unsubst||$B=7/4}}}}) = {{ safesubst:#invoke:Unsubst||$B=97/56}} ## Some useful theorems If a0, a1, a2, … is an infinite sequence of positive integers, define the sequences hn and kn recursively: Theorem 1. For any positive real number z ${\displaystyle \left[a_{0};a_{1},\,\dots ,a_{n-1},z\right]={\frac {zh_{n-1}+h_{n-2}}{zk_{n-1}+k_{n-2}}}.}$ Theorem 2. The convergents of [a0; a1, a2, …] are given by ${\displaystyle \left[a_{0};a_{1},\,\dots ,a_{n}\right]={\frac {h_{n}}{k_{n}}}.}$ Theorem 3. If the nth convergent to a continued fraction is hn/kn, then ${\displaystyle k_{n}h_{n-1}-k_{n-1}h_{n}=(-1)^{n}.}$ Corollary 1: Each convergent is in its lowest terms (for if hn and kn had a nontrivial common divisor it would divide knhn−1kn−1hn, which is impossible). Corollary 2: The difference between successive convergents is a fraction whose numerator is unity: ${\displaystyle {\frac {h_{n}}{k_{n}}}-{\frac {h_{n-1}}{k_{n-1}}}={\frac {h_{n}k_{n-1}-k_{n}h_{n-1}}{k_{n}k_{n-1}}}={\frac {-(-1)^{n}}{k_{n}k_{n-1}}}.}$ Corollary 3: The continued fraction is equivalent to a series of alternating terms: ${\displaystyle a_{0}+\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{k_{n}k_{n+1}}}.}$ Corollary 4: The matrix ${\displaystyle {\begin{bmatrix}h_{n}&h_{n-1}\\k_{n}&k_{n-1}\end{bmatrix}}}$ has determinant plus or minus one, and thus belongs to the group of 2×2 unimodular matrices GL(2, Z). Theorem 4. Each (s-th) convergent is nearer to a subsequent (n-th) convergent than any preceding (r-th) convergent is. In symbols, if the n-th convergent is taken to be [a0a1, ..., an] = xn, then ${\displaystyle \left|x_{r}-x_{n}\right|>\left|x_{s}-x_{n}\right|}$ for all r < s < n. Corollary 1: The even convergents (before the nth) continually increase, but are always less than xn. Corollary 2: The odd convergents (before the nth) continually decrease, but are always greater than xn. Theorem 5. ${\displaystyle {\frac {1}{k_{n}(k_{n+1}+k_{n})}}<\left|x-{\frac {h_{n}}{k_{n}}}\right|<{\frac {1}{k_{n}k_{n+1}}}.}$ Corollary 1: Any convergent is nearer to the continued fraction than any other fraction whose denominator is less than that of the convergent Corollary 2: Any convergent which immediately precedes a large quotient is a near approximation to the continued fraction. ## Semiconvergents If Template:Bigmath are successive convergents, then any fraction of the form Template:Bigmath where Template:Mvar is a nonnegative integer and the numerators and denominators are between the Template:Mvar and n + 1 terms inclusive are called semiconvergents, secondary convergents, or intermediate fractions. Often the term is taken to mean that being a semiconvergent excludes the possibility of being a convergent, rather than that a convergent is a kind of semiconvergent. The semiconvergents to the continued fraction expansion of a real number Template:Mvar include all the rational approximations which are better than any approximation with a smaller denominator. Another useful property is that consecutive semiconvergents {{ safesubst:#invoke:Unsubst||$B=a/b}} and {{ safesubst:#invoke:Unsubst||$B=c/d}} are such that adbc = ±1. ## Best rational approximations {{#invoke:see also|seealso}} A best rational approximation to a real number Template:Mvar is a rational number {{ safesubst:#invoke:Unsubst||$B=}}, d > 0, that is closer to Template:Mvar than any approximation with a smaller or equal denominator. The simple continued fraction for Template:Mvar generates all of the best rational approximations for Template:Mvar according to three rules:

1. Truncate the continued fraction, and possibly decrement its last term.
2. The decremented term cannot have less than half its original value.
3. If the final term is even, half its value is admissible only if the corresponding semiconvergent is better than the previous convergent. (See below.)

For example, 0.84375 has continued fraction [0;1,5,2,2]. Here are all of its best rational approximations.

 [0;1] [0;1,3] [0;1,4] [0;1,5] [0;1,5,2] [0;1,5,2,1] [0;1,5,2,2] 1 {{ safesubst:#invoke:Unsubst $B=3/4}} {{ safesubst:#invoke:Unsubst$B=4/5}} {{ safesubst:#invoke:Unsubst $B=5/6}} {{ safesubst:#invoke:Unsubst$B=11/13}} {{ safesubst:#invoke:Unsubst $B=16/19}} {{ safesubst:#invoke:Unsubst$B=27/32}}

The strictly monotonic increase in the denominators as additional terms are included permits an algorithm to impose a limit, either on size of denominator or closeness of approximation.

The "half rule" mentioned above is that when Template:MvarTemplate:Mvar is even, the halved term Template:MvarTemplate:Mvar/2 is admissible if and only if |x − [a0 ; a1, …, ak − 1]| > |x − [a0 ; a1, …, ak − 1, ak/2]| [7] This is equivalent[7] to:[8]

[ak; ak − 1, …, a1] > [ak; ak + 1, …].

The convergents to Template:Mvar are best approximations in an even stronger sense: Template:Mvar/Template:Mvar is a convergent for Template:Mvar if and only if |dxn| is the least relative error among all approximations Template:Mvar/Template:Mvar with cd; that is, we have |dxn| < |cxm| so long as c < d. (Note also that |dkxnk| → 0 as k → ∞.)

### Best rational within an interval

A rational that falls within the interval Template:Open-open, for , can be found with the continued fractions for Template:Mvar and Template:Mvar. When both Template:Mvar and Template:Mvar are irrational and

x = [a0; a1, a2, …, ak − 1, ak, ak + 1, …]
y = [a0; a1, a2, …, ak − 1, bk, bk + 1, …]

where Template:Mvar and Template:Mvar have identical continued fraction expansions up through ak−1, a rational that falls within the interval Template:Open-open is given by the finite continued fraction,

z(x,y) = [a0; a1, a2, …, ak − 1, min(ak, bk) + 1]

This rational will be best in that no other rational in Template:Open-open will have a smaller numerator or a smaller denominator.

If Template:Mvar is rational, it will have two continued fraction representations that are finite, x1 and x2, and similarly a rational Template:Mvar will have two representations, y1 and y2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x1, y1), z(x1, y2), z(x2, y1), or z(x2, y2).

For example, the decimal representation 3.1416 could be rounded from any number in the interval Template:Closed-closed. The continued fraction representations of 3.14155 and 3.14165 are

3.14155 = [3; 7, 15, 2, 7, 1, 4, 1, 1] = [3; 7, 15, 2, 7, 1, 4, 2]
3.14165 = [3; 7, 16, 1, 3, 4, 2, 3, 1] = [3; 7, 16, 1, 3, 4, 2, 4]

and the best rational between these two is

[3; 7, 16] = {{ safesubst:#invoke:Unsubst||$B=355/113}} = 3.1415929.... Thus, in some sense, {{ safesubst:#invoke:Unsubst||$B=355/113}} is the best rational number corresponding to the rounded decimal number 3.1416.

### Interval for a convergent

A rational number, which can be expressed as finite continued fraction in two ways,

z = [a0; a1, …, ak − 1, ak, 1] = [a0; a1, …, ak − 1, ak + 1]

will be one of the convergents for the continued fraction expansion of a number, if and only if the number is strictly between

x = [a0; a1, …, ak − 1, ak, 2] and
y = [a0; a1, …, ak − 1, ak + 2]

Note that the numbers Template:Mvar and Template:Mvar are formed by incrementing the last coefficient in the two representations for Template:Mvar, and that x < y when Template:Mvar is even, and x > y when Template:Mvar is odd.

For example, the number {{ safesubst:#invoke:Unsubst||$B=355/113}} has the continued fraction representations {{ safesubst:#invoke:Unsubst||$B=355/113}} = [3; 7, 15, 1] = [3; 7, 16]

and thus {{ safesubst:#invoke:Unsubst||$B=355/113}} is a convergent of any number strictly between  [3; 7, 15, 2] = {{ safesubst:#invoke:Unsubst$B=688/219}} ≈ 3.1415525 [3; 7, 17] = {{ safesubst:#invoke:Unsubst $B=377/120}} ≈ 3.1416667 ## Comparison of continued fractions Consider x = [a0; a1, …] and y = [b0; b1, …]. If Template:Mvar is the smallest index for which ak is unequal to bk then x < y if (−1)k(akbk) < 0 and y < x otherwise. If there is no such Template:Mvar, but one expansion is shorter than the other, say x = [a0; a1, …, an] and y = [b0; b1, …, bn, bn + 1, …] with ai = bi for 0 ≤ in, then x < y if Template:Mvar is even and y < x if Template:Mvar is odd. ## Continued fraction expansions of π To calculate the convergents of π we may set a0 = ⌊π⌋ = 3, define u1 = {{ safesubst:#invoke:Unsubst||$B=1/π − 3}} ≈ 7.0625 and a1 = ⌊u1⌋ = 7, u2 = {{ safesubst:#invoke:Unsubst||$B=1/u1 − 7}} ≈ 15.9665 and a2 = ⌊u2⌋ = 15, u3 = {{ safesubst:#invoke:Unsubst||$B=1/u2 − 15}} ≈ 1.003. Continuing like this, one can determine the infinite continued fraction of π as

[3;7,15,1,292,1,1,…] (sequence A001203 in OEIS).

The fourth convergent of π is [3;7,15,1] = {{ safesubst:#invoke:Unsubst||$B=355/113}} = 3.14159292035..., sometimes called Milü, which is fairly close to the true value of π. Let us suppose that the quotients found are, as above, [3;7,15,1]. The following is a rule by which we can write down at once the convergent fractions which result from these quotients without developing the continued fraction. The first quotient, supposed divided by unity, will give the first fraction, which will be too small, namely, {{ safesubst:#invoke:Unsubst||$B=3/1}}. Then, multiplying the numerator and denominator of this fraction by the second quotient and adding unity to the numerator, we shall have the second fraction, {{ safesubst:#invoke:Unsubst||$B=22/7}}, which will be too large. Multiplying in like manner the numerator and denominator of this fraction by the third quotient, and adding to the numerator the numerator of the preceding fraction, and to the denominator the denominator of the preceding fraction, we shall have the third fraction, which will be too small. Thus, the third quotient being 15, we have for our numerator Template:J, and for our denominator, Template:J. The third convergent, therefore, is {{ safesubst:#invoke:Unsubst||$B=333/106}}. We proceed in the same manner for the fourth convergent. The fourth quotient being 1, we say 333 times 1 is 333, and this plus 22, the numerator of the fraction preceding, is 355; similarly, 106 times 1 is 106, and this plus 7 is 113.

In this manner, by employing the four quotients [3;7,15,1], we obtain the four fractions:

{{ safesubst:#invoke:Unsubst||$B=3/1}}, {{ safesubst:#invoke:Unsubst||$B=22/7}}, {{ safesubst:#invoke:Unsubst||$B=333/106}}, {{ safesubst:#invoke:Unsubst||$B=355/113}}, ….

These convergents are alternately smaller and larger than the true value of π, and approach nearer and nearer to π. The difference between a given convergent and π is less than the reciprocal of the product of the denominators of that convergent and the next convergent. For example, the fraction {{ safesubst:#invoke:Unsubst||$B=22/7}} is greater than π, but {{ safesubst:#invoke:Unsubst||$B=22/7}} − π is less than {{ safesubst:#invoke:Unsubst||$B=1/7 × 106}} = {{ safesubst:#invoke:Unsubst||$B=1/742}} (in fact, {{ safesubst:#invoke:Unsubst||$B=22/7}} − π is just less than {{ safesubst:#invoke:Unsubst||$B=1/790}}).

The demonstration of the foregoing properties is deduced from the fact that if we seek the difference between one of the convergent fractions and the next adjacent to it we shall obtain a fraction of which the numerator is always unity and the denominator the product of the two denominators. Thus the difference between {{ safesubst:#invoke:Unsubst||$B=22/7}} and {{ safesubst:#invoke:Unsubst||$B=3/1}} is {{ safesubst:#invoke:Unsubst||$B=1/7}}, in excess; between {{ safesubst:#invoke:Unsubst||$B=333/106}} and {{ safesubst:#invoke:Unsubst||$B=22/7}}, {{ safesubst:#invoke:Unsubst||$B=1/742}}, in deficit; between {{ safesubst:#invoke:Unsubst||$B=355/113}} and {{ safesubst:#invoke:Unsubst||$B=333/106}}, {{ safesubst:#invoke:Unsubst||$B=1/11978}}, in excess; and so on. The result being, that by employing this series of differences we can express in another and very simple manner the fractions with which we are here concerned, by means of a second series of fractions of which the numerators are all unity and the denominators successively be the product of every two adjacent denominators. Instead of the fractions written above, we have thus the series: {{ safesubst:#invoke:Unsubst||$B=3/1}} + {{ safesubst:#invoke:Unsubst||$B=1/1 × 7}} − {{ safesubst:#invoke:Unsubst||$B=1/7 × 106}} + {{ safesubst:#invoke:Unsubst||$B=1/106 × 113}} − … The first term, as we see, is the first fraction; the first and second together give the second fraction, {{ safesubst:#invoke:Unsubst||$B=22/7}}; the first, the second and the third give the third fraction {{ safesubst:#invoke:Unsubst||$B=333/106}}, and so on with the rest; the result being that the series entire is equivalent to the original value. ## Generalized continued fraction {{#invoke:main|main}} A generalized continued fraction is an expression of the form ${\displaystyle x=b_{0}+{\cfrac {a_{1}}{b_{1}+{\cfrac {a_{2}}{b_{2}+{\cfrac {a_{3}}{b_{3}+{\cfrac {a_{4}}{b_{4}+\ddots \,}}}}}}}}}$ where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction. To illustrate the use of generalized continued fractions, consider the following example. The sequence of partial denominators of the simple continued fraction of π does not show any obvious pattern: ${\displaystyle \pi =[3;7,15,1,292,1,1,1,2,1,3,1,\ldots ]}$ or ${\displaystyle \pi =3+{\cfrac {1}{7+{\cfrac {1}{15+{\cfrac {1}{1+{\cfrac {1}{292+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{3+{\cfrac {1}{1+\ddots }}}}}}}}}}}}}}}}}}}}}}}$ However, several generalized continued fractions for π have a perfectly regular structure, such as: ${\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+{\cfrac {9^{2}}{2+\ddots }}}}}}}}}}}}={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}=3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+{\cfrac {9^{2}}{6+\ddots }}}}}}}}}}}$ ${\displaystyle \displaystyle \pi =2+{\cfrac {2}{1+{\cfrac {1}{1/2+{\cfrac {1}{1/3+{\cfrac {1}{1/4+\ddots }}}}}}}}=2+{\cfrac {2}{1+{\cfrac {1\cdot 2}{1+{\cfrac {2\cdot 3}{1+{\cfrac {3\cdot 4}{1+\ddots }}}}}}}}}$ ${\displaystyle \displaystyle \pi =2+{\cfrac {4}{3+{\cfrac {1\cdot 3}{4+{\cfrac {3\cdot 5}{4+{\cfrac {5\cdot 7}{4+\ddots }}}}}}}}}$ The first two of these are special cases of the arctangent function with π = 4 arctan (1). ## Other continued fraction expansions ### Periodic continued fractions {{#invoke:main|main}} The numbers with periodic continued fraction expansion are precisely the irrational solutions of quadratic equations with rational coefficients (rational solutions have finite continued fraction expansions as previously stated). The simplest examples are the golden ratio φ = [1;1,1,1,1,1,…] and Template:Sqrt = [1;2,2,2,2,…]; while Template:Sqrt = [3;1,2,1,6,1,2,1,6…] and Template:Sqrt = [6;2,12,2,12,2,12…]. All irrational square roots of integers have a special form for the period; a symmetrical string, like the empty string (for Template:Sqrt) or 1,2,1 (for Template:Sqrt), followed by the double of the leading integer. ### A property of the golden ratio φ Because the continued fraction expansion for φ doesn't use any integers greater than 1, φ is one of the most "difficult" real numbers to approximate with rational numbers. Hurwitz's theorem[9] states that any real number Template:Mvar can be approximated by infinitely many rational {{ safesubst:#invoke:Unsubst||$B=m/n}} with

${\displaystyle \left|k-{m \over n}\right|<{1 \over n^{2}{\sqrt {5}}}.}$

While virtually all real numbers Template:Mvar will eventually have infinitely many convergents {{ safesubst:#invoke:Unsubst||$B=m/n}} whose distance from Template:Mvar is significantly smaller than this limit, the convergents for φ (i.e., the numbers {{ safesubst:#invoke:Unsubst||$B=5/3}}, {{ safesubst:#invoke:Unsubst||$B=8/5}}, {{ safesubst:#invoke:Unsubst||$B=13/8}}, {{ safesubst:#invoke:Unsubst||$B=21/13}}, etc.) consistently "toe the boundary", keeping a distance of almost exactly ${\displaystyle {\scriptstyle {1 \over n^{2}{\sqrt {5}}}}}$ away from φ, thus never producing an approximation nearly as impressive as, for example, {{ safesubst:#invoke:Unsubst||$B=355/113}} for π. It can also be shown that every real number of the form {{ safesubst:#invoke:Unsubst||$B=a + bφ/c + dφ}}, where Template:Mvar, Template:Mvar, Template:Mvar, and Template:Mvar are integers such that adbc = ±1, shares this property with the golden ratio φ; and that all other real numbers can be more closely approximated. ### Regular patterns in continued fractions While there is no discernable pattern in the simple continued fraction expansion of π, there is one for e, the base of the natural logarithm: ${\displaystyle e=e^{1}=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,\dots ],}$ which is a special case of this general expression for positive integer Template:Mvar: ${\displaystyle e^{1/n}=[1;n-1,1,1,3n-1,1,1,5n-1,1,1,7n-1,1,1,\dots ]\,\!.}$ Another, more complex pattern appears in this continued fraction expansion for positive odd Template:Mvar: ${\displaystyle e^{2/n}=\left[1;{\frac {n-1}{2}},6n,{\frac {5n-1}{2}},1,1,{\frac {7n-1}{2}},18n,{\frac {11n-1}{2}},1,1,{\frac {13n-1}{2}},30n,{\frac {17n-1}{2}},1,1,\dots \right]\,\!,}$ with a special case for n = 1: ${\displaystyle e^{2}=[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,1,12,54,14,1,1\dots ,3k,12k+6,3k+2,1,1\dots ]\,\!.}$ Other continued fractions of this sort are ${\displaystyle \tanh(1/n)=[0;n,3n,5n,7n,9n,11n,13n,15n,17n,19n,\dots ]\,\!}$ where Template:Mvar is a positive integer; also, for integral Template:Mvar: ${\displaystyle \tan(1/n)=[0;n-1,1,3n-2,1,5n-2,1,7n-2,1,9n-2,1,\dots ]\,\!,}$ with a special case for n = 1: ${\displaystyle \tan(1)=[1;1,1,3,1,5,1,7,1,9,1,11,1,13,1,15,1,17,1,19,1,\dots ]\,\!.}$ If In(x) is the modified, or hyperbolic, Bessel function of the first kind, we may define a function on the rationals {{ safesubst:#invoke:Unsubst||$B=p/q}} by

${\displaystyle S(p/q)={\frac {I_{p/q}(2/q)}{I_{1+p/q}(2/q)}},}$

which is defined for all rational numbers, with Template:Mvar and Template:Mvar in lowest terms. Then for all nonnegative rationals, we have

${\displaystyle S(p/q)=[p+q;p+2q,p+3q,p+4q,\dots ],}$

with similar formulas for negative rationals; in particular we have

${\displaystyle S(0)=S(0/1)=[1;2,3,4,5,6,7,\dots ].}$

Many of the formulas can be proved using Gauss's continued fraction.

### Typical continued fractions

Most irrational numbers do not have any periodic or regular behavior in their continued fraction expansion. Nevertheless Khinchin proved that for almost all real numbers Template:Mvar, the ai (for i = 1, 2, 3, …) have an astonishing property: their geometric mean is a constant (known as Khinchin's constant, K ≈ 2.6854520010…) independent of the value of Template:Mvar. Paul Lévy showed that the Template:Mvarth root of the denominator of the Template:Mvarth convergent of the continued fraction expansion of almost all real numbers approaches an asymptotic limit, approximately 3.27582, which is known as Lévy's constant. Lochs' theorem states that Template:Mvarth convergent of the continued fraction expansion of almost all real numbers determines the number to an average accuracy of just over Template:Mvar decimal places.

## Generalized continued fraction for square roots

The identity Template:NumBlk leads via recursion to the generalized continued fraction for any square root:[10] Template:NumBlk

## Notes

1. http://www.britannica.com/EBchecked/topic/135043/continued-fraction
2. Template:Harvtxt
3. Template:Harvtxt
4. Template:Harvtxt
5. Darren C. Collins, Continued Fractions, MIT Undergraduate Journal of Mathematics, [1]
6. {{#invoke:citation/CS1|citation |CitationClass=citation }}
7. {{#invoke:citation/CS1|citation |CitationClass=citation }}
8. Theorem 193: {{#invoke:citation/CS1|citation |CitationClass=book }}
9. Ben Thurston, "Estimating square roots, generalized continued fraction expression for every square root", The Ben Paul Thurston Blog
10. {{#invoke:citation/CS1|citation |CitationClass=citation }}.
11. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
12. Template:Cite web

## References

• {{#invoke:citation/CS1|citation

|CitationClass=book }}

• {{#invoke:citation/CS1|citation

|CitationClass=book }}

• {{#invoke:citation/CS1|citation

|CitationClass=citation }}

• Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, New York, NY 1950.
• {{#invoke:citation/CS1|citation

|CitationClass=citation }}

• {{#invoke:citation/CS1|citation

|CitationClass=book }}

• H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
• A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland, W.B. Jones, Handbook of Continued fractions for Special functions, Springer Verlag, 2008 ISBN 978-1-4020-6948-2
• Rieger, G. J. A new approach to the real numbers (motivated by continued fractions). Abh. Braunschweig.Wiss. Ges. 33 (1982), 205–217