Home runs per nine innings

From formulasearchengine
Jump to navigation Jump to search

In mathematics, a metric outer measure is an outer measure μ defined on the subsets of a given metric space (Xd) such that

μ(AB)=μ(A)+μ(B)

for every pair of positively separated subsets A and B of X.

Construction of metric outer measures

Let τ : Σ → [0, +∞] be a set function defined on a class Σ of subsets of X containing the empty set ∅, such that τ(∅) = 0. One can show that the set function μ defined by

μ(E)=limδ0μδ(E),

where

μδ(E)=inf{i=1τ(Ci)|CiΣ,diam(Ci)δ,i=1CiE},

is not only an outer measure, but in fact a metric outer measure as well. (Some authors prefer to take a supremum over δ > 0 rather than a limit as δ → 0; the two give the same result, since μδ(E) increases as δ decreases.)

For the function τ one can use

τ(C)=diam(C)s,

where s is a positive constant; this τ is defined on the power set of all subsets of X; the associated measure μ is the s-dimensional Hausdorff measure. More generally, one could use any so-called dimension function.

This construction is very important in fractal geometry, since this is how the Hausdorff and packing measures are obtained.

Properties of metric outer measures

Let μ be a metric outer measure on a metric space (Xd).

  • For any sequence of subsets An, n ∈ N, of X with
A1A2A=n=1An,
and such that An and A \ An+1 are positively separated, it follows that
μ(A)=supnμ(An).
  • All the d-closed subsets E of X are μ-measurable in the sense that they satisfy the following version of Carathéodory's criterion: for all sets A and B with A ⊆ E and B ⊆ X \ E,
μ(AB)=μ(A)+μ(B).
  • Consequently, all the Borel subsets of X — those obtainable as countable unions, intersections and set-theoretic differences of open/closed sets — are μ-measurable.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534