Lyapunov–Malkin theorem

From formulasearchengine
Jump to navigation Jump to search

The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Gilevich Malkin) is a mathematical theorem detailing nonlinear stability of systems.[1]


In the system of differential equations,

where, , , in an m × m matrix, and X(xy), Y(xy) represent higher order nonlinear terms. If all eigenvalues of the matrix have negative real parts, and X(xy), Y(xy) vanish when x = 0, then the solution x = 0, y = 0 of this system is stable with respect to (xy) and asymptotically stable with respect to  x. If a solution (x(t), y(t)) is close enough to the solution x = 0, y = 0, then


  1. Zenkov, D.V., Bloch, A.M., & Marsden, J.E. (1999). "Lyapunov–Malkin Theorem and Stabilization of the Unicycle Rider." [1]. Retrieved on 2009-10-18.