# Nuclear operator

In mathematics, a nuclear operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis (at least on well behaved spaces; there are some spaces on which nuclear operators do not have a trace). Nuclear operators are essentially the same as trace class operators, though most authors reserve the term "trace class operator" for the special case of nuclear operators on Hilbert spaces. The general definition for Banach spaces was given by Grothendieck. This article concentrates on the general case of nuclear operators on Banach spaces; for the important special case of nuclear (=trace class) operators on Hilbert space see the article on trace class operators.

## Compact operator

${\mathcal {L}}:{\mathcal {H}}\to {\mathcal {H}}$ ## On Banach spaces

See main article Fredholm kernel.

The definition of trace-class operator was extended to Banach spaces by Alexander Grothendieck in 1955.

Let A and B be Banach spaces, and A' be the dual of A, that is, the set of all continuous or (equivalently) bounded linear functionals on A with the usual norm. Then an operator

${\mathcal {L}}:A\to B$ $\inf \left\{p\geq 1:\sum _{n}|\rho _{n}|^{p}<\infty \right\}=q,$ such that the operator may be written as

${\mathcal {L}}=\sum _{n}\rho _{n}f_{n}^{*}(\cdot )g_{n}$ with the sum converging in the operator norm.

With additional steps, a trace may be defined for such operators when A = B.

Operators that are nuclear of order 1 are called nuclear operators: these are the ones for which the series ∑ρn is absolutely convergent. Nuclear operators of order 2 are called Hilbert–Schmidt operators.

More generally, an operator from a locally convex topological vector space A to a Banach space B is called nuclear if it satisfies the condition above with all fn* bounded by 1 on some fixed neighborhood of 0 and all gn bounded by 1 on some fixed neighborhood of 0.