# Portal:Atlas/Selected article/16

In mathematics, the **polar coordinate system** is a two-dimensional coordinate system in which each point on a plane is determined by an angle and a distance. The polar coordinate system is especially useful in situations where the relationship between two points is most easily expressed in terms of angles and distance; in the more familiar Cartesian or rectangular coordinate system, such a relationship can only be found through trigonometric formulation.

As the coordinate system is two-dimensional, each point is determined by two polar coordinates: the radial coordinate and the angular coordinate. The radial coordinate (usually denoted as ) denotes the point's distance from a central point known as the *pole* (equivalent to the *origin* in the Cartesian system). The angular coordinate (also known as the polar angle or the azimuth angle, and usually denoted by θ or ) denotes the positive or anticlockwise (counterclockwise) angle required to reach the point from the 0° ray or *polar axis* (which is equivalent to the positive x-axis in the Cartesian coordinate plane).