Quantum triviality

From formulasearchengine
Jump to navigation Jump to search

{{#invoke: Sidebar | collapsible }}

In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only allowed value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions,[1][2] but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance.

This Higgs triviality is similar to the Landau pole problem in quantum electrodynamics, where this quantum theory may be inconsistent at very high momentum scales unless the renormalized charge is set to zero, i.e., unless the field theory has no interactions. The Landau pole question is generally considered to be of minor academic interest for quantum electrodynamics because of the inaccessibly large momentum scale at which the inconsistency appears. This is not however the case in theories that involve the elementary scalar Higgs boson, as the momentum scale at which a "trivial" theory exhibits inconsistencies may be accessible to present experimental efforts such as at the LHC. In these Higgs theories, the interactions of the Higgs particle with itself are posited to generate the masses of the W and Z bosons, as well as lepton masses like those of the electron and muon. If realistic models of particle physics such as the Standard Model suffer from triviality issues, the idea of an elementary scalar Higgs particle may have to be modified or abandoned.

The situation becomes more complex in theories that involve other particles however. In fact, the addition of other particles can turn a trivial theory into a nontrivial one, at the cost of introducing constraints. Depending on the details of the theory, the Higgs mass can be bounded or even predictable.[2] These quantum triviality constraints are in sharp contrast to the picture one derives at the classical level, where the Higgs mass is a free parameter.

Triviality and the renormalization group

The first evidence of possible triviality of quantum field theories was obtained by Landau, Abrikosov, and Khalatnikov[3][4][5] who obtained the following relation of the observable charge Template:Mvarobs with the “bare” charge Template:Mvar₀,

Template:NumBlk

where Template:Mvar is the mass of the particle, and Template:Mvar is the momentum cut-off. If Template:Mvar₀ is finite, then Template:Mvarobs tends to zero in the limit of infinite cut-off Template:Mvar.

In fact, the proper interpretation of Eq.1 consists in its inversion, so that Template:Mvar₀ (related to the length scale 1/Template:Mvar) is chosen to give a correct value of Template:Mvarobs,

Template:NumBlk

The growth of Template:Mvar₀ with Template:Mvar invalidates Eqs. (Template:EquationNote) and (Template:EquationNote) in the region Template:Mvar₀ ≈ 1 (since they were obtained for Template:Mvar₀ ≪ 1) and the existence of the “Landau pole" in Eq.2 has no physical meaning.

The actual behavior of the charge g(μ) as a function of the momentum scale Template:Mvar is determined by the full Gell-Mann–Low equation

Template:NumBlk

which gives Eqs.(Template:EquationNote),(Template:EquationNote) if it is integrated under conditions g(μ) =gobs for Template:Mvar = Template:Mvar and g(μ) = Template:Mvar₀ for Template:Mvar = Template:Mvar, when only the term with is retained in the right hand side.

The general behavior of relies on the appearance of the function β(g). According to the classification by Bogoliubov and Shirkov,[6] there are three qualitatively different situations:

Template:Ordered list

The latter case corresponds to the quantum triviality in the full theory (beyond its perturbation context), as can be seen by reductio ad absurdum. Indeed, if Template:Mvarobs is finite, the theory is internally inconsistent. The only way to avoid it, is to tend to infinity, which is possible only for Template:Mvarobs → 0.

Formula (Template:EquationNote) is interpreted differently, however, in the theory of critical phenomena. In this case, Template:Mvar and Template:Mvar₀ have a direct physical meaning, related to the lattice spacing and the coefficient in the effective Landau Hamiltonian. The trivial theory with Template:Mvarobs=0 is obtained in the limit Template:Mvar → 0, which corresponds to the critical point. Such triviality has a physical meaning and corresponds to the absence of interaction between large-scale fluctuations of the order parameter. The fundamental question arises whether such triviality holds for arbitrary (and not only small) values of Template:Mvar₀. This question was investigated by Kenneth G. Wilson using the real-space renormalization group,[7] and strong evidence for the affirmative answer was obtained. Subsequent numerical investigations of lattice field theory confirmed Wilson’s conclusion.

However, it should be noted that “Wilson triviality” signifies only that the Template:Mvar-function is non-alternating and does not have non-trivial zeros: it excludes only the case (a) in the Bogoliubov and Shirkov classification. The “true” quantum triviality is a stronger property, corresponding to the case (c). While “Wilson triviality” is confirmed by several investigations and can be considered as firmly established, the evidence of “true triviality” is scarce and allows a different interpretation.

As a result, the question of whether the Standard Model of particle physics is nontrivial (and whether elementary scalar Higgs particles can exist) remains a serious unresolved question. Partial evidence in favor of its positive solution has appeared;[8][9][10] implications for the Standard Model and the resulting Higgs Boson mass bounds have also been discussed.[11][12][13]

See also

References

  1. {{#invoke:citation/CS1|citation |CitationClass=book }}
  2. 2.0 2.1 {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  3. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  4. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  5. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  6. {{#invoke:citation/CS1|citation |CitationClass=book }}
  7. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  8. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  9. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  10. {{#invoke:citation/CS1|citation |CitationClass=conference }}
  11. Template:Cite doi
  12. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  13. Urs Heller, Markus Klomfass, Herbert Neuberger, and Pavlos Vranas, (1993). "Numerical analysis of the Higgs mass triviality bound", Nucl. Phys., B405: 555-573.