|
|
(641 intermediate revisions by more than 100 users not shown) |
Line 1: |
Line 1: |
| {{Otheruses4|the mathematics of the chi-squared distribution|its uses in statistics|chi-squared test|the music group|Chi2 (band)}}
| | This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users. |
|
| |
|
| {{Probability distribution
| | If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]] |
| | type = density
| | * Only registered users will be able to execute this rendering mode. |
| | pdf_image = [[File:chi-square pdf.svg|325px]]
| | * Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere. |
| | cdf_image = [[File:chi-square distributionCDF.svg|325px]]
| |
| | notation = <math>\chi^2(k)\!</math> or <math>\chi^2_k\!</math>
| |
| | parameters = <math>k \in \mathbb{N}~~</math> (known as "degrees of freedom")
| |
| | support = ''x'' ∈ [0, +∞)
| |
| | pdf = <math>\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\; x^{\frac{k}{2}-1} e^{-\frac{x}{2}}\,</math>
| |
| | cdf = <math>\frac{1}{\Gamma\left(\frac{k}{2}\right)}\;\gamma\left(\frac{k}{2},\,\frac{x}{2}\right)</math>
| |
| | mean = ''k''
| |
| | median = <math>\approx k\bigg(1-\frac{2}{9k}\bigg)^3</math>
| |
| | mode = max{ ''k'' − 2, 0 }
| |
| | variance = 2''k''
| |
| | skewness = <math>\scriptstyle\sqrt{8/k}\,</math>
| |
| | kurtosis = 12 / ''k''
| |
| | entropy = <math>\frac{k}{2}\!+\!\ln(2\Gamma(k/2))\!+\!(1\!-\!k/2)\psi(k/2)</math>
| |
| | mgf = {{nowrap|(1 − 2 ''t'')<sup>−''k''/2</sup>}} for  t  < ½
| |
| | char = {{nowrap|(1 − 2 ''i'' ''t'')<sup>−''k''/2</sup>}} <ref>{{cite web | url=http://www.planetmathematics.com/CentralChiDistr.pdf | title=Characteristic function of the central chi-squared distribution | author=M.A. Sanders | accessdate=2009-03-06}}</ref>
| |
| }}
| |
|
| |
|
| In [[probability theory]] and [[statistics]], the '''chi-squared distribution''' (also '''chi-square''' or {{nowrap|1='''[[chi (letter)|<span style="font-family:serif">''χ''</span>]]²-distribution'''}}) with ''k'' [[Degrees of freedom (statistics)|degrees of freedom]] is the distribution of a sum of the squares of ''k'' [[Independence (probability theory)|independent]] [[standard normal]] random variables. It is one of the most widely used [[probability distribution]]s in [[inferential statistics]], e.g., in [[hypothesis testing]] or in construction of [[confidence interval]]s.<ref name=abramowitz>{{Abramowitz_Stegun_ref|26|940}}</ref><ref>NIST (2006). [http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Engineering Statistics Handbook - Chi-Squared Distribution]</ref><ref>{{cite book
| | Registered users will be able to choose between the following three rendering modes: |
| | last = Jonhson
| |
| | first = N.L.
| |
| | coauthors = S. Kotz, , N. Balakrishnan
| |
| | title = Continuous Univariate Distributions (Second Ed., Vol. 1, Chapter 18)
| |
| | publisher = John Willey and Sons
| |
| | year = 1994
| |
| | isbn = 0-471-58495-9
| |
| }}</ref><ref>{{cite book
| |
| | last = Mood
| |
| | first = Alexander
| |
| | coauthors = Franklin A. Graybill, Duane C. Boes
| |
| | title = Introduction to the Theory of Statistics (Third Edition, p. 241-246)
| |
| | publisher = McGraw-Hill
| |
| | year = 1974
| |
| | isbn = 0-07-042864-6
| |
| }}</ref> When there is a need to contrast it with the [[noncentral chi-squared distribution]], this distribution is sometimes called the '''central chi-squared distribution'''.
| |
|
| |
|
| The chi-squared distribution is used in the common [[chi-squared test]]s for [[goodness of fit]] of an observed distribution to a theoretical one, the [[statistical independence|independence]] of two criteria of classification of [[data analysis|qualitative data]], and in [[confidence interval]] estimation for a population [[standard deviation]] of a normal distribution from a sample standard deviation. Many other statistical tests also use this distribution, like [[Friedman test|Friedman's analysis of variance by ranks]].
| | '''MathML''' |
| | :<math forcemathmode="mathml">E=mc^2</math> |
|
| |
|
| The chi-squared distribution is a special case of the [[gamma distribution]].
| | <!--'''PNG''' (currently default in production) |
| | :<math forcemathmode="png">E=mc^2</math> |
|
| |
|
| ==Definition==
| | '''source''' |
| If ''Z''<sub>1</sub>, ..., ''Z''<sub>''k''</sub> are [[independence (probability theory)|independent]], [[standard normal]] random variables, then the sum of their squares,
| | :<math forcemathmode="source">E=mc^2</math> --> |
| : <math> | |
| Q\ = \sum_{i=1}^k Z_i^2 ,
| |
| </math>
| |
| is distributed according to the '''chi-squared distribution''' with ''k'' degrees of freedom. This is usually denoted as
| |
| : <math>
| |
| Q\ \sim\ \chi^2(k)\ \ \text{or}\ \ Q\ \sim\ \chi^2_k .
| |
| </math>
| |
|
| |
|
| The chi-squared distribution has one parameter: ''k'' — a positive integer that specifies the number of [[degrees of freedom (statistics)|degrees of freedom]] (i.e. the number of ''Z''<sub>''i''</sub>’s)
| | <span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples]. |
|
| |
|
| ==Characteristics== | | ==Demos== |
| Further properties of the chi-squared distribution can be found in the box at the upper right corner of this article.
| |
|
| |
|
| ===Probability density function===
| | Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]: |
| The [[probability density function]] (pdf) of the chi-squared distribution is
| |
| :<math> | |
| f(x;\,k) =
| |
| \begin{cases}
| |
| \frac{x^{(k/2)-1} e^{-x/2}}{2^{k/2} \Gamma\left(\frac{k}{2}\right)}, & x \geq 0; \\ 0, & \text{otherwise}.
| |
| \end{cases}
| |
| </math>
| |
| where Γ(''k''/2) denotes the [[Gamma function]], which has [[particular values of the Gamma function|closed-form values for odd ''k'']].
| |
|
| |
|
| For derivations of the pdf in the cases of one and two degrees of freedom, see [[Proofs related to chi-squared distribution]].
| |
|
| |
|
| ===Cumulative distribution function===
| | * accessibility: |
| Its [[cumulative distribution function]] is:
| | ** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]] |
| : <math> | | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)] |
| F(x;\,k) = \frac{\gamma(\frac{k}{2},\,\frac{x}{2})}{\Gamma(\frac{k}{2})} = P\left(\frac{k}{2},\,\frac{x}{2}\right),
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)] |
| </math>
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)] |
| where γ(''k'',''z'') is the [[incomplete Gamma function|lower incomplete Gamma function]] and ''P''(''k'',''z'') is the [[regularized Gamma function]].
| | ** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]]. |
| | ** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]]. |
| | ** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode. |
|
| |
|
| In a special case of ''k'' = 2 this function has a simple form:
| | ==Test pages == |
| : <math>
| |
| F(x;\,2) = 1 - e^{-\frac{x}{2}}.
| |
| </math>
| |
|
| |
|
| For the cases when ''0'' < ''z'' < ''1'' (which include all of the cases when this CDF is less than half), the following [[Chernoff_bound#The_first_step_in_the_proof_of_Chernoff_bounds| Chernoff upper bound]] may be obtained:<ref>{{cite journal |last1=Dasgupta |first1=Sanjoy D. A. |last2=Gupta |first2=Anupam K. |year=2002 |title=An Elementary Proof of a Theorem of Johnson and Lindenstrauss |journal=Random Structures and Algorithms |volume=22 |issue= |pages=60-65 |publisher= |doi= |url=http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf |accessdate=2012-05-01 }}</ref>
| | To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages: |
| : <math>
| | *[[Displaystyle]] |
| F(z k;\,k) \leq (z e^{1-z})^{k/2}.
| | *[[MathAxisAlignment]] |
| </math>
| | *[[Styling]] |
| | *[[Linebreaking]] |
| | *[[Unique Ids]] |
| | *[[Help:Formula]] |
|
| |
|
| The tail bound for the cases when ''z'' > ''1'' follows similarly
| | *[[Inputtypes|Inputtypes (private Wikis only)]] |
| : <math>
| | *[[Url2Image|Url2Image (private Wikis only)]] |
| 1-F(z k;\,k) \leq (z e^{1-z})^{k/2}.
| | ==Bug reporting== |
| </math>
| | If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de . |
| | |
| | |
| Tables of this cumulative distribution function are widely available and the function is included in many [[spreadsheet]]s and all [[List of statistical packages|statistical packages]]. For another [[approximation]] for the CDF modeled after the cube of a Gaussian, see [[Noncentral_chi-squared_distribution#Approximation|under Noncentral chi-squared distribution]].
| |
| | |
| ===Additivity===
| |
| It follows from the definition of the chi-squared distribution that the sum of independent chi-squared variables is also chi-squared distributed. Specifically, if {''X<sub>i</sub>''}<sub>''i''=1</sub><sup>''n''</sup> are independent chi-squared variables with {''k<sub>i</sub>''}<sub>''i''=1</sub><sup>''n''</sup> degrees of freedom, respectively, then {{nowrap|''Y {{=}} X''<sub>1</sub> + ⋯ + ''X<sub>n</sub>''}} is chi-squared distributed with {{nowrap|''k''<sub>1</sub> + ⋯ + ''k<sub>n</sub>''}} degrees of freedom.
| |
| | |
| ===Information entropy===
| |
| The [[information entropy]] is given by
| |
| : <math>
| |
| H = \int_{-\infty}^\infty f(x;\,k)\ln f(x;\,k) \, dx
| |
| = \frac{k}{2} + \ln\left(2\Gamma\left(\frac{k}{2}\right)\right) + \left(1-\frac{k}{2}\right) \psi\left(\frac{k}{2}\right),
| |
| </math>
| |
| where ''ψ''(''x'') is the [[Digamma function]].
| |
| | |
| The Chi-squared distribution is the [[maximum entropy probability distribution]] for a random variate ''X'' for which <math>E(X)=\nu</math> and <math>E(\ln(X))=\psi\left(\frac{1}{2}\right)+\ln(2)</math> are fixed. <ref>{{cite journal |last1=Park |first1=Sung Y. |last2=Bera |first2=Anil K. |year=2009 |title=Maximum entropy autoregressive conditional heteroskedasticity model |journal=Journal of Econometrics |volume= |issue= |pages=219–230 |publisher=Elsevier |doi= |url=http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf |accessdate=2011-06-02 }}</ref>
| |
| | |
| ===Noncentral moments===
| |
| The moments about zero of a chi-squared distribution with ''k'' degrees of freedom are given by<ref>[http://mathworld.wolfram.com/Chi-SquaredDistribution.html Chi-squared distribution], from [[MathWorld]], retrieved Feb. 11, 2009</ref><ref>M. K. Simon, ''Probability Distributions Involving Gaussian Random Variables'', New York: Springer, 2002, eq. (2.35), ISBN 978-0-387-34657-1</ref>
| |
| : <math>
| |
| \operatorname{E}(X^m) = k (k+2) (k+4) \cdots (k+2m-2) = 2^m \frac{\Gamma(m+\frac{k}{2})}{\Gamma(\frac{k}{2})}.
| |
| </math>
| |
| | |
| ===Cumulants===
| |
| The [[cumulant]]s are readily obtained by a (formal) power series expansion of the logarithm of the characteristic function:
| |
| : <math>
| |
| \kappa_n = 2^{n-1}(n-1)!\,k
| |
| </math>
| |
| | |
| ===Asymptotic properties===
| |
| By the [[central limit theorem]], because the chi-squared distribution is the sum of ''k'' independent random variables with finite mean and variance, it converges to a normal distribution for large ''k''. For many practical purposes, for ''k'' > 50 the distribution is sufficiently close to a [[normal distribution]] for the difference to be ignored.<ref>{{cite book|title=Statistics for experimenters|author=Box, Hunter and Hunter|publisher=Wiley|page=46}}</ref> Specifically, if ''X'' ~ ''χ''²(''k''), then as ''k'' tends to infinity, the distribution of <math>(X-k)/\sqrt{2k}</math> [[convergence of random variables#Convergence in distribution|tends]] to a standard normal distribution. However, convergence is slow as the [[skewness]] is <math>\sqrt{8/k}</math> and the [[excess kurtosis]] is 12/''k''. Other functions of the chi-squared distribution converge more rapidly to a normal distribution. Some examples are:
| |
| * If ''X'' ~ ''χ''²(''k'') then <math>\scriptstyle\sqrt{2X}</math> is approximately normally distributed with mean <math>\scriptstyle\sqrt{2k-1}</math> and unit variance (result credited to [[R. A. Fisher]]).
| |
| * If ''X'' ~ ''χ''²(''k'') then <math>\scriptstyle\sqrt[3]{X/k}</math> is approximately normally distributed with mean <math>\scriptstyle 1-2/(9k)</math> and variance <math>\scriptstyle 2/(9k) .</math><ref>Wilson, E.B.; Hilferty, M.M. (1931) "The distribution of chi-squared". ''Proceedings of the National Academy of Sciences, Washington'', 17, 684–688.
| |
| </ref> This is known as the Wilson-Hilferty transformation.
| |
| | |
| ==Relation to other distributions==
| |
| {{Ref improve section|date=September 2011}}
| |
| | |
| [[File:Chi_on_SAS.png|thumb|right|400px|Approximate formula for median compared with numerical quantile (top) as presented in [[SAS (software) | SAS Software]]. Difference between numerical quantile and approximate formula (bottom).]] | |
| * As <math>k\to\infty</math>, <math> (\chi^2_k-k)/\sqrt{2k} \xrightarrow{d}\ N(0,1) \,</math> ([[normal distribution]])
| |
| | |
| *<math> \chi_k^2 \sim {\chi'}^2_k(0)</math> ([[Noncentral chi-squared distribution]] with non-centrality parameter <math> \lambda = 0 </math>)
| |
| | |
| *If <math>X \sim \mathrm{F}(\nu_1, \nu_2)</math> then <math>Y = \lim_{\nu_2 \to \infty} \nu_1 X</math> has the [[chi-squared distribution]] <math>\chi^2_{\nu_{1}}</math>
| |
| | |
| *As a special case, if <math>X \sim \mathrm{F}(1, \nu_2)\,</math> then <math>Y = \lim_{\nu_2 \to \infty} X\,</math> has the [[chi-squared distribution]] <math>\chi^2_{1}</math>
| |
| | |
| *<math> \|\boldsymbol{N}_{i=1,...,k}{(0,1)}\|^2 \sim \chi^2_k </math> (The squared [[Norm (mathematics)|norm]] of '''n''' standard normally distributed variables is a chi-squared distribution with '''k''' [[degrees of freedom (statistics)|degrees of freedom]])
| |
| | |
| *If <math>X \sim {\chi}^2(\nu)\,</math> and <math>c>0 \,</math>, then <math>cX \sim {\Gamma}(k=\nu/2, \theta=2c)\,</math>. ([[gamma distribution]])
| |
| | |
| *If <math>X \sim \chi^2_k</math> then <math>\sqrt{X} \sim \chi_k</math> ([[chi distribution]])
| |
| | |
| *If <math>X \sim \mathrm{Rayleigh}(1)\,</math> ([[Rayleigh distribution]]) then <math>X^2 \sim \chi^2(2)\,</math>
| |
| | |
| *If <math>X \sim \mathrm{Maxwell}(1)\,</math> ([[Maxwell distribution]]) then <math>X^2 \sim \chi^2(3)\,</math>
| |
| | |
| *If <math>X \sim \chi^2(\nu)</math> then <math>\tfrac{1}{X} \sim \mbox{Inv-}\chi^2(\nu)\, </math> ([[Inverse-chi-squared distribution]])
| |
| | |
| *The chi-squared distribution is a special case of type 3 [[Pearson distribution]]
| |
| | |
| * If <math>X \sim \chi^2(\nu_1)\,</math> and <math>Y \sim \chi^2(\nu_2)\,</math> are independent then <math>\tfrac{X}{X+Y} \sim {\rm Beta}(\tfrac{\nu_1}{2}, \tfrac{\nu_2}{2})\,</math> ([[beta distribution]])
| |
| | |
| *If <math> X \sim {\rm U}(0,1)\, </math> ([[Uniform distribution (continuous)|uniform distribution]]) then <math> -2\log{(U)} \sim \chi^2(2)\,</math>
| |
| | |
| * <math>\chi^2(6)\,</math> is a transformation of [[Laplace distribution]]
| |
| | |
| *If <math>X_i \sim \mathrm{Laplace}(\mu,\beta)\,</math> then <math>\sum_{i=1}^n{\frac{2 |X_i-\mu|}{\beta}} \sim \chi^2(2n)\,</math>
| |
| | |
| * chi-squared distribution is a transformation of [[Pareto distribution]]
| |
| | |
| * [[Student's t-distribution]] is a transformation of chi-squared distribution
| |
| | |
| * [[Student's t-distribution]] can be obtained from chi-squared distribution and [[normal distribution]]
| |
| | |
| * [[Noncentral beta distribution]] can be obtained as a transformation of chi-squared distribution and [[Noncentral chi-squared distribution]]
| |
| | |
| * [[Noncentral t-distribution]] can be obtained from normal distribution and chi-squared distribution
| |
| | |
| A chi-squared variable with ''k'' degrees of freedom is defined as the sum of the squares of ''k'' independent [[standard normal distribution|standard normal]] random variables.
| |
| | |
| If ''Y'' is a ''k''-dimensional Gaussian random vector with mean vector ''μ'' and rank ''k'' covariance matrix ''C'', then ''X'' = (''Y''−''μ'')<sup>T</sup>''C''<sup>−1</sup>(''Y''−''μ'') is chi-squared distributed with ''k'' degrees of freedom.
| |
| | |
| The sum of squares of [[statistically independent]] unit-variance Gaussian variables which do ''not'' have mean zero yields a generalization of the chi-squared distribution called the [[noncentral chi-squared distribution]].
| |
| | |
| If ''Y'' is a vector of ''k'' [[i.i.d.]] standard normal random variables and ''A'' is a ''k×k'' [[idempotent matrix]] with [[rank (linear algebra)|rank]] ''k−n'' then the [[quadratic form]] ''Y<sup>T</sup>AY'' is chi-squared distributed with ''k−n'' degrees of freedom.
| |
| | |
| The chi-squared distribution is also naturally related to other distributions arising from the Gaussian. In particular,
| |
| | |
| * ''Y'' is [[F-distribution|F-distributed]], ''Y'' ~ ''F''(''k''<sub>1</sub>,''k''<sub>2</sub>) if <math>\scriptstyle Y = \frac{X_1 / k_1}{X_2 / k_2}</math> where ''X''<sub>1</sub> ~ ''χ''²(''k''<sub>1</sub>) and ''X''<sub>2</sub> ~ ''χ''²(''k''<sub>2</sub>) are statistically independent.
| |
| | |
| * If ''X'' is chi-squared distributed, then <math>\scriptstyle\sqrt{X}</math> is [[chi distribution|chi distributed]].
| |
| | |
| * If {{nowrap|''X''<sub>1</sub> ~ ''χ''<sup>2</sup><sub>''k''<sub>1</sub></sub>}} and {{nowrap|''X''<sub>2</sub> ~ ''χ''<sup>2</sup><sub>''k''<sub>2</sub></sub>}} are statistically independent, then {{nowrap|''X''<sub>1</sub> + ''X''<sub>2</sub> ~ ''χ''<sup>2</sup><sub>''k''<sub>1</sub>+''k''<sub>2</sub></sub>}}. If ''X''<sub>1</sub> and ''X''<sub>2</sub> are not independent, then {{nowrap|''X''<sub>1</sub> + ''X''<sub>2</sub>}} is not chi-squared distributed.
| |
| | |
| ==Generalizations==
| |
| The chi-squared distribution is obtained as the sum of the squares of ''k'' independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below.
| |
| ===Chi-squared distributions===
| |
| ====Noncentral chi-squared distribution====
| |
| {{Main|Noncentral chi-squared distribution}}
| |
| The noncentral chi-squared distribution is obtained from the sum of the squares of independent Gaussian random variables having unit variance and ''nonzero'' means.
| |
| | |
| ====Generalized chi-squared distribution====
| |
| {{Main|Generalized chi-squared distribution}}
| |
| The generalized chi-squared distribution is obtained from the quadratic form ''z′Az'' where ''z'' is a zero-mean Gaussian vector having an arbitrary covariance matrix, and ''A'' is an arbitrary matrix.
| |
| | |
| ===Gamma, exponential, and related distributions===
| |
| The chi-squared distribution ''X'' ~ ''χ''²(''k'') is a special case of the [[gamma distribution]], in that ''X'' ~ Γ(''k''/2, 1/2) (using the shape parameterization of the gamma distribution) where ''k'' is an integer.
| |
| | |
| Because the [[exponential distribution]] is also a special case of the Gamma distribution, we also have that if ''X'' ~ ''χ''²(2), then ''X'' ~ Exp(1/2) is an [[exponential distribution]].
| |
| | |
| The [[Erlang distribution]] is also a special case of the Gamma distribution and thus we also have that if ''X'' ~ ''χ''²(''k'') with even ''k'', then ''X'' is Erlang distributed with shape parameter ''k''/2 and scale parameter 1/2.
| |
| | |
| ==Applications==
| |
| The chi-squared distribution has numerous applications in inferential [[statistics]], for instance in [[chi-squared test]]s and in estimating [[variance]]s. It enters the problem of estimating the mean of a normally distributed population and the problem of estimating the slope of a [[linear regression|regression]] line via its role in [[Student’s t-distribution]]. It enters all [[analysis of variance]] problems via its role in the [[F-distribution]], which is the distribution of the ratio of two independent chi-squared [[random variable]]s, each divided by their respective degrees of freedom.
| |
| | |
| Following are some of the most common situations in which the chi-squared distribution arises from a Gaussian-distributed sample.
| |
| | |
| *if ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'' are [[independent identically-distributed random variables|i.i.d.]] ''N''(''μ'', ''σ''<sup>2</sup>) [[random variable]]s, then <math>\sum_{i=1}^n(X_i - \bar X)^2 \sim \sigma^2 \chi^2_{n-1}</math> where <math>\bar X = \frac{1}{n} \sum_{i=1}^n X_i</math>.
| |
| | |
| *The box below shows probability distributions with name starting with '''chi''' for some [[statistic]]s based on {{nowrap|''X<sub>i</sub>'' ∼ Normal(''μ<sub>i</sub>'', ''σ''<sup>2</sup><sub>''i''</sub>), ''i'' {{=}} 1, ⋯, ''k'', }} independent random variables:
| |
| <center>
| |
| {| class="wikitable" align="center"
| |
| |-
| |
| ! Name !! Statistic
| |
| |-
| |
| | chi-squared distribution || <math>\sum_{i=1}^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2</math>
| |
| |-
| |
| | [[noncentral chi-squared distribution]] || <math>\sum_{i=1}^k \left(\frac{X_i}{\sigma_i}\right)^2</math>
| |
| |-
| |
| | [[chi distribution]] || <math>\sqrt{\sum_{i=1}^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2}</math>
| |
| |-
| |
| | [[noncentral chi distribution]] || <math>\sqrt{\sum_{i=1}^k \left(\frac{X_i}{\sigma_i}\right)^2}</math>
| |
| |}
| |
| </center>
| |
| | |
| ==Table of ''χ''<sup>2</sup> value vs p-value==
| |
| The [[p-value]] is the probability of observing a test statistic ''at least'' as extreme in a chi-squared distribution. Accordingly, since the [[cumulative distribution function]] (CDF) for the appropriate degrees of freedom ''(df)'' gives the probability of having obtained a value ''less extreme'' than this point, subtracting the CDF value from 1 gives the p-value. The table below gives a number of p-values matching to ''χ''<sup>2</sup> for the first 10 degrees of freedom.
| |
| | |
| A p-value of 0.05 or less is usually regarded as [[Statistical significance|statistically significant]], i.e. the observed deviation from the null hypothesis is significant.
| |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! Degrees of freedom (df)
| |
| !colspan=11| ''χ''<sup>2</sup> value <ref>[http://www2.lv.psu.edu/jxm57/irp/chisquar.html Chi-Squared Test] Table B.2. Dr. Jacqueline S. McLaughlin at The Pennsylvania State University. In turn citing: R.A. Fisher and F. Yates, Statistical Tables for Biological Agricultural and Medical Research, 6th ed., Table IV</ref>
| |
| |-
| |
| | <div align="center"> 1
| |
| | 0.004
| |
| | 0.02
| |
| | 0.06
| |
| | 0.15
| |
| | 0.46
| |
| | 1.07
| |
| | 1.64
| |
| | 2.71
| |
| | 3.84
| |
| | 6.64
| |
| | 10.83
| |
| |-
| |
| | <div align="center"> 2
| |
| | 0.10
| |
| | 0.21
| |
| | 0.45
| |
| | 0.71
| |
| | 1.39
| |
| | 2.41
| |
| | 3.22
| |
| | 4.60
| |
| | 5.99
| |
| | 9.21
| |
| | 13.82
| |
| |-
| |
| | <div align="center"> 3
| |
| | 0.35
| |
| | 0.58
| |
| | 1.01
| |
| | 1.42
| |
| | 2.37
| |
| | 3.66
| |
| | 4.64
| |
| | 6.25
| |
| | 7.82
| |
| | 11.34
| |
| | 16.27
| |
| |-
| |
| | <div align="center"> 4
| |
| | 0.71
| |
| | 1.06
| |
| | 1.65
| |
| | 2.20
| |
| | 3.36
| |
| | 4.88
| |
| | 5.99
| |
| | 7.78
| |
| | 9.49
| |
| | 13.28
| |
| | 18.47
| |
| |-
| |
| | <div align="center"> 5
| |
| | 1.14
| |
| | 1.61
| |
| | 2.34
| |
| | 3.00
| |
| | 4.35
| |
| | 6.06
| |
| | 7.29
| |
| | 9.24
| |
| | 11.07
| |
| | 15.09
| |
| | 20.52
| |
| |-
| |
| | <div align="center"> 6
| |
| | 1.63
| |
| | 2.20
| |
| | 3.07
| |
| | 3.83
| |
| | 5.35
| |
| | 7.23
| |
| | 8.56
| |
| | 10.64
| |
| | 12.59
| |
| | 16.81
| |
| | 22.46
| |
| |-
| |
| | <div align="center"> 7
| |
| | 2.17
| |
| | 2.83
| |
| | 3.82
| |
| | 4.67
| |
| | 6.35
| |
| | 8.38
| |
| | 9.80
| |
| | 12.02
| |
| | 14.07
| |
| | 18.48
| |
| | 24.32
| |
| |-
| |
| | <div align="center"> 8
| |
| | 2.73
| |
| | 3.49
| |
| | 4.59
| |
| | 5.53
| |
| | 7.34
| |
| | 9.52
| |
| | 11.03
| |
| | 13.36
| |
| | 15.51
| |
| | 20.09
| |
| | 26.12
| |
| |-
| |
| | <div align="center"> 9
| |
| | 3.32
| |
| | 4.17
| |
| | 5.38
| |
| | 6.39
| |
| | 8.34
| |
| | 10.66
| |
| | 12.24
| |
| | 14.68
| |
| | 16.92
| |
| | 21.67
| |
| | 27.88
| |
| |-
| |
| | <div align="center"> 10
| |
| | 3.94
| |
| | 4.86
| |
| | 6.18
| |
| | 7.27
| |
| | 9.34
| |
| | 11.78
| |
| | 13.44
| |
| | 15.99
| |
| | 18.31
| |
| | 23.21
| |
| | 29.59
| |
| |-
| |
| ! <div align="right"> P value (Probability)
| |
| | style="background: #ffa2aa" | 0.95
| |
| | style="background: #efaaaa" | 0.90
| |
| | style="background: #e8b2aa" | 0.80
| |
| | style="background: #dfbaaa" | 0.70
| |
| | style="background: #d8c2aa" | 0.50
| |
| | style="background: #cfcaaa" | 0.30
| |
| | style="background: #c8d2aa" | 0.20
| |
| | style="background: #bfdaaa" | 0.10
| |
| | style="background: #b8e2aa" | 0.05
| |
| | style="background: #afeaaa" | 0.01
| |
| | style="background: #a8faaa" | 0.001
| |
| |-
| |
| |
| |
| !colspan=8 style="background: #e8b2aa" | Nonsignificant
| |
| !colspan=3 style="background: #afeaaa" | Significant
| |
| |}
| |
| | |
| ==History==
| |
| | |
| This distribution was first described by the German statistician Helmert.
| |
| | |
| ==See also==
| |
| {{Portal|Statistics}}
| |
| {{Colbegin}}
| |
| *[[Cochran's theorem]]
| |
| *[[Fisher's method]] for combining [[Statistical independence|independent]] tests of significance
| |
| * [[Pearson's chi-squared test]]
| |
| * [[F-distribution]]
| |
| * [[Generalized chi-squared distribution]]
| |
| * [[Gamma distribution]]
| |
| * [[Hotelling's T-squared distribution]]
| |
| * [[Student's t-distribution]]
| |
| * [[Wilks' lambda distribution]]
| |
| * [[Wishart distribution]]
| |
| {{Colend}}
| |
| | |
| ==References==
| |
| {{Reflist}}
| |
| | |
| ==External links==
| |
| *[http://jeff560.tripod.com/c.html Earliest Uses of Some of the Words of Mathematics: entry on Chi squared has a brief history]
| |
| *[http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm Course notes on Chi-Squared Goodness of Fit Testing] from Yale University Stats 101 class.
| |
| *[http://demonstrations.wolfram.com/StatisticsAssociatedWithNormalSamples/ ''Mathematica'' demonstration showing the chi-squared sampling distribution of various statistics, e.g. Σ''x''², for a normal population]
| |
| *[http://www.jstor.org/stable/2348373 Simple algorithm for approximating cdf and inverse cdf for the chi-squared distribution with a pocket calculator]
| |
| | |
| {{ProbDistributions|continuous-semi-infinite}}
| |
| {{Common univariate probability distributions}}
| |
| | |
| {{DEFAULTSORT:Chi-Squared Distribution}}
| |
| [[Category:Continuous distributions]]
| |
| [[Category:Normal distribution]]
| |
| | |
| [[Category:Exponential family distributions]]
| |
| | |
| [[ar:توزيع خي تربيع]]
| |
| [[ca:Distribució khi quadrat]]
| |
| [[cs:Χ² rozdělení]]
| |
| [[de:Chi-Quadrat-Verteilung]]
| |
| [[es:Distribución χ²]]
| |
| [[eu:Khi-karratu banakuntza]]
| |
| [[fa:توزیع کیدو]]
| |
| [[fr:Loi du χ²]]
| |
| [[ko:카이제곱 분포]]
| |
| [[id:Distribusi khi-kuadrat]]
| |
| [[is:Kí-kvaðratsdreifing]]
| |
| [[it:Distribuzione chi quadrato]]
| |
| [[he:התפלגות כי בריבוע]]
| |
| [[hu:Khi-négyzet eloszlás]]
| |
| [[nl:Chi-kwadraatverdeling]]
| |
| [[ja:カイ二乗分布]]
| |
| [[no:Kjikvadratfordeling]]
| |
| [[pl:Rozkład chi kwadrat]]
| |
| [[pt:Chi-quadrado]]
| |
| [[ru:Распределение хи-квадрат]]
| |
| [[simple:Chi-square distribution]]
| |
| [[sk:Χ²-rozdelenie]]
| |
| [[sl:Porazdelitev hi-kvadrat]]
| |
| [[su:Sebaran chi-kuadrat]]
| |
| [[fi:Khii toiseen -jakauma]]
| |
| [[sv:Chitvåfördelning]]
| |
| [[tr:Ki-kare dağılımı]]
| |
| [[uk:Розподіл хі-квадрат]]
| |
| [[zh:卡方分佈]]
| |
| [[zh-yue:Chi-square]]
| |