|
|
(506 intermediate revisions by more than 100 users not shown) |
Line 1: |
Line 1: |
| In [[category theory]], an abstract branch of [[mathematics]], an '''equivalence of categories''' is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
| | This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users. |
|
| |
|
| If a category is equivalent to the [[dual (category theory)|opposite (or dual)]] of another category then one speaks of | | If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]] |
| a '''duality of categories''', and says that the two categories are '''dually equivalent'''.
| | * Only registered users will be able to execute this rendering mode. |
| | * Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere. |
|
| |
|
| An equivalence of categories consists of a [[functor]] between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for [[isomorphism]]s in an algebraic setting, the composition of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be ''[[natural transformation|naturally isomorphic]]'' to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of [[isomorphism of categories]] where a strict form of inverse functor is required, but this is of much less practical use than the ''equivalence'' concept.
| | Registered users will be able to choose between the following three rendering modes: |
|
| |
|
| ==Definition==
| | '''MathML''' |
| Formally, given two categories ''C'' and ''D'', an ''equivalence of categories'' consists of a functor ''F'' : ''C'' → ''D'', a functor ''G'' : ''D'' → ''C'', and two natural isomorphisms ε: ''FG''→'''I'''<sub>''D''</sub> and η : '''I'''<sub>''C''</sub>→''GF''. Here ''FG'': ''D''→''D'' and ''GF'': ''C''→''C'', denote the respective compositions of ''F'' and ''G'', and '''I'''<sub>''C''</sub>: ''C''→''C'' and '''I'''<sub>''D''</sub>: ''D''→''D'' denote the ''identity functors'' on ''C'' and ''D'', assigning each object and morphism to itself. If ''F'' and ''G'' are contravariant functors one speaks of a ''duality of categories'' instead.
| | :<math forcemathmode="mathml">E=mc^2</math> |
|
| |
|
| One often does not specify all the above data. For instance, we say that the categories ''C'' and ''D'' are ''equivalent'' (respectively ''dually equivalent'') if there exists an equivalence (respectively duality) between them. Furthermore, we say that ''F'' "is" an equivalence of categories if an inverse functor ''G'' and natural isomorphisms as above exist. Note however that knowledge of ''F'' is usually not enough to reconstruct ''G'' and the natural isomorphisms: there may be many choices (see example below).
| | <!--'''PNG''' (currently default in production) |
| | :<math forcemathmode="png">E=mc^2</math> |
|
| |
|
| ==Equivalent characterizations==
| | '''source''' |
| One can show that a functor ''F'' : ''C'' → ''D'' yields an equivalence of categories if and only if it is:
| | :<math forcemathmode="source">E=mc^2</math> --> |
| * [[full functor|full]], i.e. for any two objects ''c''<sub>1</sub> and ''c''<sub>2</sub> of ''C'', the map Hom<sub>''C''</sub>(''c''<sub>1</sub>,''c''<sub>2</sub>) → Hom<sub>''D''</sub>(''Fc''<sub>1</sub>,''Fc''<sub>2</sub>) induced by ''F'' is [[surjective]];
| |
| * [[faithful functor|faithful]], i.e. for any two objects ''c''<sub>1</sub> and ''c''<sub>2</sub> of ''C'', the map Hom<sub>''C''</sub>(''c''<sub>1</sub>,''c''<sub>2</sub>) → Hom<sub>''D''</sub>(''Fc''<sub>1</sub>,''Fc''<sub>2</sub>) induced by ''F'' is [[injective]]; and
| |
| * [[essentially surjective functor|essentially surjective (dense)]], i.e. each object ''d'' in ''D'' is isomorphic to an object of the form ''Fc'', for ''c'' in ''C''.
| |
| This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" ''G'' and the natural isomorphisms between ''FG'', ''GF'' and the identity functors. On the other hand, though the above properties guarantee the ''existence'' of a categorical equivalence (given a sufficiently strong version of the [[axiom of choice]] in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible.
| |
| Due to this circumstance, a functor with these properties is sometimes called a '''weak equivalence of categories''' (unfortunately this conflicts with terminology from homotopy theory).
| |
|
| |
|
| There is also a close relation to the concept of [[adjoint functors]]. The following statements are equivalent for functors ''F'' : ''C'' → ''D'' and ''G'' : ''D'' → ''C'':
| | <span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples]. |
| * There are natural isomorphisms from ''FG'' to '''I'''<sub>''D''</sub> and '''I'''<sub>''C''</sub> to ''GF''.
| |
| * ''F'' is a left adjoint of ''G'' and both functors are full and faithful.
| |
| * ''F'' is a right adjoint of ''G'' and both functors are full and faithful.
| |
| One may therefore view an adjointness relation between two functors as a "very weak form of equivalence". Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the ''counit'' of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.
| |
|
| |
|
| ==Examples== | | ==Demos== |
| * Consider the category <math>C</math> having a single object <math>c</math> and a single morphism <math>1_{c}</math>, and the category <math>D</math> with two objects <math>d_{1}</math>, <math>d_{2}</math> and four morphisms: two identity morphisms <math>1_{d_{1}}</math>, <math>1_{d_{2}}</math> and two isomorphisms <math>\alpha \colon d_{1} \to d_{2}</math> and <math>\beta \colon d_{2} \to d_{1}</math>. The categories <math>C</math> and <math>D</math> are equivalent; we can (for example) have <math>F</math> map <math>c</math> to <math>d_{1}</math> and <math>G</math> map both objects of <math>D</math> to <math>c</math> and all morphisms to <math>1_{c}</math>.
| |
|
| |
|
| * By contrast, the category <math>C</math> with a single object and a single morphism is ''not'' equivalent to the category <math>E</math> with two objects and only two identity morphisms as the two objects therein are ''not'' isomorphic.
| | Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]: |
|
| |
|
| * Consider a category <math>C</math> with one object <math>c</math>, and two morphisms <math>1_{c}, f \colon c \to c</math>. Let <math>1_{c}</math> be the identity morphism on <math>c</math> and set <math>f \circ f = 1</math>. Of course, <math>C</math> is equivalent to itself, which can be shown by taking <math>1_{c}</math> in place of the required natural isomorphisms between the functor <math>\mathbf{I}_{C}</math> and itself. However, it is also true that <math>f</math> yields a natural isomorphism from <math>\mathbf{I}_{C}</math> to itself. Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction.
| |
|
| |
|
| * Consider the category <math>C</math> of finite-[[dimension of a vector space|dimensional]] [[real number|real]] [[vector space]]s, and the category <math>D = \mathrm{Mat}(\mathbf{R})</math> of all real [[matrix (mathematics)|matrices]] (the latter category is explained in the article on [[additive category|additive categories]]). Then <math>C</math> and <math>D</math> are equivalent: The functor <math>G \colon D \to C</math> which maps the object <math>A_{n}</math> of <math>D</math> to the vector space <math>\mathbf{R}^{n}</math> and the matrices in <math>D</math> to the corresponding linear maps is full, faithful and essentially surjective. | | * accessibility: |
| | ** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]] |
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)] |
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)] |
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)] |
| | ** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]]. |
| | ** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]]. |
| | ** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode. |
|
| |
|
| * One of the central themes of [[algebraic geometry]] is the duality of the category of [[affine scheme]]s and the category of [[commutative ring]]s. The functor <math>G</math> associates to every commutative ring its [[spectrum of a ring|spectrum]], the scheme defined by the [[prime ideal]]s of the ring. Its adjoint <math>F</math> associates to every affine scheme its ring of global sections.
| | ==Test pages == |
|
| |
|
| * In [[functional analysis]] the category of commutative [[C*-algebra]]s with identity is contravariantly equivalent to the category of [[compact space|compact]] [[Hausdorff space]]s. Under this duality, every compact Hausdorff space <math>X</math> is associated with the algebra of continuous complex-valued functions on <math>X</math>, and every commutative C*-algebra is associated with the space of its [[maximal ideal]]s. This is the [[Gelfand representation]]. | | To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages: |
| | *[[Displaystyle]] |
| | *[[MathAxisAlignment]] |
| | *[[Styling]] |
| | *[[Linebreaking]] |
| | *[[Unique Ids]] |
| | *[[Help:Formula]] |
|
| |
|
| * In [[lattice theory]], there are a number of dualities, based on representation theorems that connect certain classes of lattices to classes of [[topology|topological spaces]]. Probably the most well-known theorem of this kind is ''[[Stone's representation theorem for Boolean algebras]]'', which is a special instance within the general scheme of ''[[Stone duality]]''. Each [[Boolean algebra (structure)|Boolean algebra]] <math>B</math> is mapped to a specific topology on the set of [[lattice theory|ultrafilters]] of <math>B</math>. Conversely, for any topology the clopen (i.e. closed and open) subsets yield a Boolean algebra. One obtains a duality between the category of Boolean algebras (with their homomorphisms) and [[Stone space]]s (with continuous mappings). Another case of Stone duality is [[Birkhoff's representation theorem]] stating a duality between finite partial orders and finite distributive lattices. | | *[[Inputtypes|Inputtypes (private Wikis only)]] |
| | | *[[Url2Image|Url2Image (private Wikis only)]] |
| * In [[pointless topology]] the category of spatial locales is known to be equivalent to the dual of the category of sober spaces. | | ==Bug reporting== |
| | | If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de . |
| * Any category is equivalent to its [[skeleton (category theory)|skeleton]].
| |
| | |
| ==Properties== | |
| As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If ''F'' : ''C'' → ''D'' is an equivalence, then the following statements are all true:
| |
| * the object ''c'' of ''C'' is an [[initial object]] (or [[terminal object]], or [[zero object]]), [[if and only if]] ''Fc'' is an [[initial object]] (or [[terminal object]], or [[zero object]]) of ''D''
| |
| * the morphism α in ''C'' is a [[monomorphism]] (or [[epimorphism]], or [[isomorphism]]), if and only if ''Fα'' is a monomorphism (or epimorphism, or isomorphism) in ''D''.
| |
| * the functor ''H'' : ''I'' → ''C'' has [[limit (category theory)|limit]] (or colimit) ''l'' if and only if the functor ''FH'' : ''I'' → ''D'' has limit (or colimit) ''Fl''. This can be applied to [[equaliser (mathematics)|equalizers]], [[product (category theory)|product]]s and [[coproduct]]s among others. Applying it to [[kernel (category theory)|kernel]]s and [[cokernel]]s, we see that the equivalence ''F'' is an [[Regular_category#Exact_sequences_and_regular_functors|exact functor]].
| |
| * ''C'' is a [[cartesian closed category]] (or a [[topos]]) if and only if ''D'' is cartesian closed (or a topos).
| |
| | |
| Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.
| |
| | |
| If ''F'' : ''C'' → ''D'' is an equivalence of categories, and ''G''<sub>1</sub> and ''G''<sub>2</sub> are two inverses of ''F'', then ''G''<sub>1</sub> and ''G''<sub>2</sub> are naturally isomorphic.
| |
| | |
| If ''F'' : ''C'' → ''D'' is an equivalence of categories, and if ''C'' is a [[preadditive category]] (or [[additive category]], or [[abelian category]]), then ''D'' may be turned into a preadditive category (or additive category, or abelian category) in such a way that ''F'' becomes an [[additive functor]]. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.)
| |
| | |
| An '''auto-equivalence''' of a category ''C'' is an equivalence ''F'' : ''C'' → ''C''. The auto-equivalences of ''C'' form a [[group (mathematics)|group]] under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of ''C''. (One caveat: if ''C'' is not a small category, then the auto-equivalences of ''C'' may form a proper [[class (set theory)|class]] rather than a [[Set (mathematics)|set]].)
| |
| | |
| ==References==
| |
| *{{Springer|id=e036050|title=Equivalence of categories}}
| |
| *{{cite book|last=Mac Lane|first=Saunders|title=Categories for the working mathematician|year=1998|publisher=Springer|location=New York|isbn=0-387-98403-8|pages=xii+314}}
| |
| | |
| {{DEFAULTSORT:Equivalence Of Categories}}
| |
| [[Category:Adjoint functors]]
| |
| [[Category:Category theory]]
| |
| | |
| [[nl:Equivalentie (categorietheorie)]]
| |
| [[zh-yue:範疇等價性]]
| |
| [[zh:范畴的等价]]
| |