Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(354 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
In [[mathematics]], the '''Riemann–Siegel theta function''' is defined in terms of the [[Gamma function]] as
This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users.


:<math>\theta(t) = \arg \left(
If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]]
\Gamma\left(\frac{2it+1}{4}\right)
* Only registered users will be able to execute this rendering mode.
\right)
* Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.
- \frac{\log \pi}{2} t</math>


for real values of t.  Here the argument is chosen in such a way that a continuous function is obtained and <math>\theta(0)=0</math> holds, i.e., in the same way that the [[principal branch]] of the [[logarithm|log]] Gamma function is defined.
Registered users will be able to choose between the following three rendering modes:


It has an [[asymptotic expansion]]
'''MathML'''
:<math forcemathmode="mathml">E=mc^2</math>


:<math>\theta(t) \sim \frac{t}{2}\log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8}+\frac{1}{48t}+ \frac{7}{5760t^3}+\cdots</math>
<!--'''PNG'''  (currently default in production)
:<math forcemathmode="png">E=mc^2</math>


which is not convergent, but whose first few terms give a good approximation for <math>t \gg 1</math>. Its Taylor-series at 0 which converges for <math>|t| < 1/2</math> is
'''source'''
:<math forcemathmode="source">E=mc^2</math> -->


<math>\theta(t) = -\frac{t}{2} \log \pi + \sum_{k=0}^{\infty} \frac{(-1)^k \psi^{(2k)}\left(\frac{1}{4}\right) }{(2k+1)!} \left(\frac{t}{2}\right)^{2k+1}</math>
<span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples].


where <math>\psi^{(2k)}</math> denotes the [[Polygamma function]] of order <math>2k</math>.
==Demos==
The Riemann–Siegel theta function is of interest in studying the [[Riemann zeta function]], since it can rotate the Riemann zeta function such that it becomes the totally real valued [[Z function]] on the [[critical line]] <math>s = 1/2 + i t</math> .


== Curve discussion ==
Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]:


The Riemann–Siegel theta function is an odd [[real analytic function]] for real values of ''t''. It has 3 roots at 0 and <math>\pm 17.8455995405\ldots</math> and it is an increasing function for values |''t''| > 6.29, because it has exactly one minima and one maxima at <math>\pm 6.289835988\ldots</math> with absolute value <math>
3.530972829\ldots</math>. Lastly it has a unique inflection point at t=0 with <math>\theta^\prime(0)= -\frac{\ln \pi + \gamma + \pi/2 + 3 \ln 2}{2} = -2.6860917\ldots</math> where the theta function has its derivation minimum.


==Theta as a function of a complex variable==
* accessibility:
We have an infinite series expression for the log Gamma function
** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)]
** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]].
** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]].
** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode.


:<math>\log \Gamma \left(z\right) = -\gamma z -\log z 
==Test pages ==
+ \sum_{n=1}^\infty
\left(\frac{z}{n} - \log \left(1+\frac{z}{n}\right)\right),</math>


where ''γ'' is [[Euler–Mascheroni constant|Euler's constant]]. Substituting <math>(2it+1)/4</math> for ''z'' and taking the imaginary part termwise gives the following series for ''θ''(''t'')
To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages:
*[[Displaystyle]]
*[[MathAxisAlignment]]
*[[Styling]]
*[[Linebreaking]]
*[[Unique Ids]]
*[[Help:Formula]]


:<math>\theta(t) = -\frac{\gamma + \log \pi}{2}t - \arctan 2t
*[[Inputtypes|Inputtypes (private Wikis only)]]
+ \sum_{n=1}^\infty \left(\frac{t}{2n}
*[[Url2Image|Url2Image (private Wikis only)]]
- \arctan\left(\frac{2t}{4n+1}\right)\right).</math>
==Bug reporting==
 
If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de .
For values with imaginary part between -1 and 1, the arctangent function is [[holomorphic function|holomorphic]], and it is easily seen that the series converges uniformly on compact sets in the region with imaginary part between -1/2 and 1/2, leading to a holomorphic function on this domain. It follows that the [[Z function]] is also holomorphic in this region, which is the critical strip.
 
We may use the identities
 
:<math>\arg z = \frac{\log z - \log\bar z}{2i}\quad\text{and}\quad\overline{\Gamma(z)}=\Gamma(\bar z)</math>
 
to obtain the closed-form expression
 
:<math>\theta(t) = \frac{\log\Gamma\left(\frac{2it+1}{4}\right)-\log\Gamma\left(\frac{-2it+1}{4}\right)}{2i} - \frac{\log \pi}{2} t,</math>
 
which extends our original definition to a holomorphic function of t.  Since the principal branch of log Γ has a single branch cut along the negative real axis, θ(t) in this definition inherits branch cuts along the imaginary axis above i/2 and below -i/2.
 
{|  style="text-align:center"
|+ '''Riemann–Siegel theta function in the complex plane'''
|[[Image:Riemann Siegel Theta 1.jpg|1000x140px|none]]
|[[Image:Riemann Siegel Theta 2.jpg|1000x140px|none]]
|[[Image:Riemann Siegel Theta 3.jpg|1000x140px|none]]
|-
|<math>
-1 < \Re(t) < 1
</math>
|<math>
-5 < \Re(t) < 5
</math>
|<math>
-40 < \Re(t) < 40
</math>
|}
 
==Gram points==
The Riemann zeta function on the critical line can be written
 
:<math>\zeta\left(\frac{1}{2}+it\right) = e^{-i \theta(t)}Z(t),</math>
:<math>Z(t) = e^{i \theta(t)} \zeta\left(\frac{1}{2}+it\right).</math>
 
If '''<math>t</math>''' is a [[real number]], then the [[Z function]] <math>Z\left(t\right)</math> returns ''real'' values.
 
Hence the zeta function on the critical line will be ''real'' when
<math>\sin\left(\,\theta(t)\,\right)=0</math>. Positive real values of '''<math>t</math>''' where this occurs are called '''Gram points''', after [[Jørgen Pedersen Gram|J. P. Gram]], and can of course also be described as the points where <math>\frac{\theta(t)}{\pi}</math> is an integer.
 
A '''Gram point''' is a solution '''<math>g_{n}</math>''' of
:<math>\theta\left(g_{n}\right) = n\pi.</math>
 
Here are the smallest non negative '''Gram points'''
{| class="wikitable" border="1"
|-
! <math>n</math>
! <math>g_{n}</math>
! <math>\theta(g_{n})</math>
|-
|style="text-align:right;"| -3
|style="text-align:right;"|  0
|style="text-align:right;"| 0
|-
|style="text-align:right;"| -2
|style="text-align:right;"|  3.4362182261...
|style="text-align:right;"| -π
|-
|style="text-align:right;"| -1
|style="text-align:right;"|  9.6669080561...
|style="text-align:right;"| -π
|-
|style="text-align:right;"| 0
| 17.8455995405...
|style="text-align:right;"| 0
|-
|style="text-align:right;"| 1
| 23.1702827012...
|style="text-align:right;"| π
|-
|style="text-align:right;"| 2
| 27.6701822178...
|style="text-align:right;"| 2π
|-
|style="text-align:right;"| 3
| 31.7179799547...
|style="text-align:right;"| 3π
|-
|style="text-align:right;"| 4
| 35.4671842971...
|style="text-align:right;"| 4π
|-
|style="text-align:right;"| 5
| 38.9992099640...
|style="text-align:right;"| 5π
|-
|style="text-align:right;"| 6
| 42.3635503920...
|style="text-align:right;"| 6π
|-
|style="text-align:right;"| 7
| 45.5930289815...
|style="text-align:right;"| 7π
|-
|style="text-align:right;"| 8
| 48.7107766217...
|style="text-align:right;"| 8π
|-
|style="text-align:right;"| 9
| 51.7338428133...
|style="text-align:right;"| 9π
|-
|style="text-align:right;"| 10
| 54.6752374468...
|style="text-align:right;"| 10π
|-
|style="text-align:right;"| 11
| 57.5451651795...
|style="text-align:right;"| 11π
|-
|style="text-align:right;"| 12
| 60.3518119691...
|style="text-align:right;"| 12π
|-
|style="text-align:right;"| 13
| 63.1018679824...
|style="text-align:right;"| 13π
|-
|style="text-align:right;"| 14
| 65.8008876380...
|style="text-align:right;"| 14π
|-
|style="text-align:right;"| 15
| 68.4535449175...
|style="text-align:right;"| 15π
|}
 
The choice of the index ''n'' is a bit crude. It is historically chosen in such a way that the index is 0 at the first value which is larger than the smallest positive zero (at imaginary part 14.13472515 ...) of the Riemann zeta function on the critical line. Notice, this <math>\theta</math>-function oscillates for absolute-small real arguments and therefore is not uniquely invertible in the interval [-24,24]! Thus the [[Odd function|odd]] theta-function has its symmetric Gram point with value 0 at index -3.
Gram points are useful when computing the zeros of <math>Z\left(t\right)</math>. At a Gram point '''<math>g_{n}</math>''',
 
:<math>\zeta\left(\frac{1}{2}+ig_n\right) = \cos(\theta(g_n))Z(g_n) = (-1)^n Z(g_n),</math>
 
and if this is ''positive'' at ''two'' successive Gram points, <math>Z\left(t\right)</math> must have a zero in the interval.
 
According to '''Gram’s law''', the [[real part]] is ''usually'' positive while the [[imaginary part]] alternates with the '''gram points''', between ''positive'' and ''negative'' values at somewhat regular intervals.
 
:<math>(-1)^n \, Z\left(g_{n}\right) > 0</math>
 
The number of roots, <math>N\left(T\right)</math>, in the strip from 0 to ''T'', can be found by
:<math>N\left(T\right) = \frac{\theta(T)}{\pi} + 1+S(T),</math>
where <math>S(T)</math> is an error term which grows asymptotically like <math>\log T</math>.
 
Only if <math>g_{n}</math> '''would obey Gram’s law''', then finding the number of roots in the strip simply becomes
 
:<math>N\left(g_{n}\right) = n + 1.</math>
 
Today we know, that in the long run, '''Gram's law''' fails for about 1/4 of all Gram-intervals to contain exactly 1 zero of the Riemann zeta-function. Gram was afraid that it may fail for larger indices (the first miss is at index 126 before the 127th zero) and thus claimed this only for not too high indices. Later Hutchinson coined the phrase ''Gram's law'' for the (false) statement that all zeroes on the critical line would be separated by Gram points.
 
==See also==
*[[Z function]]
 
==References==
*{{Citation | last1=Edwards | first1=H. M. | authorlink = Harold Edwards (mathematician) | title=Riemann's Zeta Function | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-41740-0 | mr=0466039 | year=1974}}
*{{citation|first=J. P.|last= Gram|title= Note sur les zéros de la fonction &zeta;(s) de Riemann|journal= Acta Mathematica|volume=27|issue=1|pages=289&ndash;304|year=1903|doi=10.1007/BF02421310}}
 
==External links==
*{{MathWorld|title=Riemann-Siegel Functions|urlname=Riemann-SiegelFunctions}}
*[http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/RiemannSiegelTheta/ Wolfram Research – Riemann-Siegel Theta function] (includes function plotting and evaluation)
 
{{DEFAULTSORT:Riemann-Siegel theta function}}
[[Category:Zeta and L-functions]]

Latest revision as of 22:52, 15 September 2019

This is a preview for the new MathML rendering mode (with SVG fallback), which is availble in production for registered users.

If you would like use the MathML rendering mode, you need a wikipedia user account that can be registered here [[1]]

  • Only registered users will be able to execute this rendering mode.
  • Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.

Registered users will be able to choose between the following three rendering modes:

MathML

E=mc2


Follow this link to change your Math rendering settings. You can also add a Custom CSS to force the MathML/SVG rendering or select different font families. See these examples.

Demos

Here are some demos:


Test pages

To test the MathML, PNG, and source rendering modes, please go to one of the following test pages:

Bug reporting

If you find any bugs, please report them at Bugzilla, or write an email to math_bugs (at) ckurs (dot) de .