Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(252 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Continuum mechanics|cTopic=[[Solid mechanics]]}}
This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users.
[[Image:Drucker Prager Yield Surface 3Da.png|300px|right|thumb|Figure 1: View of Drucker–Prager yield surface in 3D space of principal stresses for <math>c=2, \phi=-20^\circ</math>]]


The '''Drucker–Prager yield criterion'''<ref> Drucker, D. C. and Prager, W. (1952). ''Soil mechanics and plastic analysis for limit design''. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165.</ref> is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding.  The criterion was introduced to deal with the plastic deformation of soils.  It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.
If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]]
* Only registered users will be able to execute this rendering mode.
* Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.


The Drucker–Prager yield criterion has the form
Registered users will be able to choose between the following three rendering modes:  
:<math>
  \sqrt{J_2} = A + B~I_1
</math>
where <math>I_1</math> is the [[Stress_(physics)#Principal_stresses_and_stress_invariants|first invariant]] of the [[Stress (physics)|Cauchy stress]] and <math>J_2</math> is the [[Stress_(physics)#Invariants_of_the_stress_deviator_tensor|second invariant]] of the [[Stress_(physics)#Stress_deviator_tensor|deviatoric]] part of the [[Stress (physics)|Cauchy stress]].  The constants <math>A, B </math> are determined from experiments. 


In terms of the [[von Mises stress|equivalent stress]] (or [[von Mises stress]]) and the [[hydrostatic stress|hydrostatic (or mean) stress]], the Drucker–Prager criterion can be expressed as
'''MathML'''
:<math>
:<math forcemathmode="mathml">E=mc^2</math>
  \sigma_e = a + b~\sigma_m
</math>
where <math>\sigma_e</math> is the equivalent stress, <math>\sigma_m</math> is the hydrostatic stress, and
<math>a,b</math> are material constants.  The Drucker–Prager yield criterion expressed in [[Yield_surface#Invariants_used_to_describe_yield_surfaces|Haigh–Westergaard coordinates]] is
:<math>
  \tfrac{1}{\sqrt{2}}\rho - \sqrt{3}~B\xi = A
</math>


The [[Yield surface#Drucker_-_Prager_yield_surface|Drucker–Prager yield surface]] is a smooth version of the [[Yield surface#Mohr_-_Coulomb_yield_surface|Mohr–Coulomb yield surface]].
<!--'''PNG'''  (currently default in production)
:<math forcemathmode="png">E=mc^2</math>


== Expressions for A and B ==
'''source'''
The Drucker–Prager model can be written in terms of the [[stress (physics)#Principal_stresses_and_stress_invariants|principal stresses]] as
:<math forcemathmode="source">E=mc^2</math> -->
:<math>
  \sqrt{\cfrac{1}{6}\left[(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2\right]} = A + B~(\sigma_1+\sigma_2+\sigma_3) ~.
</math>
If <math>\sigma_t</math> is the yield stress in uniaxial tension, the Drucker–Prager criterion implies
:<math>
  \cfrac{1}{\sqrt{3}}~\sigma_t = A + B~\sigma_t ~.
</math>
If <math>\sigma_c</math> is the yield stress in uniaxial compression, the Drucker–Prager criterion implies
:<math>
  \cfrac{1}{\sqrt{3}}~\sigma_c = A - B~\sigma_c ~.
</math>
Solving these two equations gives
:<math>
  A = \cfrac{2}{\sqrt{3}}~\left(\cfrac{\sigma_c~\sigma_t}{\sigma_c+\sigma_t}\right) ~;~~ B = \cfrac{1}{\sqrt{3}}~\left(\cfrac{\sigma_t-\sigma_c}{\sigma_c+\sigma_t}\right) ~.
</math>


=== Uniaxial asymmetry ratio ===
<span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples].
Different uniaxial yield stresses in tension and in compression are predicted by the Drucker–Prager model. The uniaxial asymmetry ratio for the Drucker–Prager model is
:<math>
  \beta = \cfrac{\sigma_\mathrm{c}}{\sigma_\mathrm{t}} = \cfrac{1 - \sqrt{3}~B}{1 + \sqrt{3}~B} ~.
</math>


=== Expressions in terms of cohesion and friction angle ===
==Demos==
Since the Drucker–Prager [[yield surface]] is a smooth version of the [[Mohr-Coulomb theory|Mohr–Coulomb yield surface]], it is often expressed in terms of the cohesion (<math>c</math>) and the angle of internal friction (<math>\phi</math>) that are used to describe the [[Mohr-Coulomb theory|Mohr–Coulomb yield surface]].  If we assume that the Drucker–Prager yield surface '''circumscribes''' the Mohr–Coulomb yield surface then the expressions for <math>A</math> and <math>B</math> are
:<math>
  A = \cfrac{6~c~\cos\phi}{\sqrt{3}(3+\sin\phi)} ~;~~
  B = \cfrac{2~\sin\phi}{\sqrt{3}(3+\sin\phi)}
</math>
If the Drucker–Prager yield surface '''inscribes''' the Mohr–Coulomb yield surface then
:<math>
  A = \cfrac{6~c~\cos\phi}{\sqrt{3}(3-\sin\phi)} ~;~~
  B = \cfrac{2~\sin\phi}{\sqrt{3}(3-\sin\phi)}
</math>
:{| class="toccolours collapsible collapsed" width="90%" style="text-align:left"
!Derivation of expressions for <math>A,B</math> in terms of <math>c,\phi</math>
|-
|The expression for the [[Mohr-Coulomb theory|Mohr–Coulomb yield criterionddadsa]] in [[Yield_surface#Invariants_used_to_describe_yield_surfaces|Haigh–Westergaard space]] is
:<math>
  \left[\sqrt{3}~\sin\left(\theta+\tfrac{\pi}{3}\right) - \sin\phi\cos\left(\theta+\tfrac{\pi}{3}\right)\right]\rho - \sqrt{2}\sin(\phi)\xi = \sqrt{6} c \cos\phi
</math>
If we assume that the Drucker–Prager yield surface '''circumscribes''' the Mohr–Coulomb yield surface such that the two surfaces coincide at <math>\theta=\tfrac{\pi}{3}</math>, then at those points the Mohr–Coulomb yield surface can be expressed as
:<math>
  \left[\sqrt{3}~\sin\tfrac{2\pi}{3} - \sin\phi\cos\tfrac{2\pi}{3}\right]\rho - \sqrt{2}\sin(\phi)\xi = \sqrt{6} c \cos\phi
</math>
or,
:<math>
  \tfrac{1}{\sqrt{2}}\rho - \cfrac{2\sin\phi}{3+\sin\phi}\xi = \cfrac{\sqrt{12} c \cos\phi}{3+\sin\phi}  \qquad \qquad (1.1)
</math>


The Drucker–Prager yield criterion expressed in [[Yield_surface#Invariants_used_to_describe_yield_surfaces|Haigh–Westergaard coordinates]] is
Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]:
:<math>
  \tfrac{1}{\sqrt{2}}\rho - \sqrt{3}~B\xi = A \qquad \qquad (1.2)
</math>
Comparing equations (1.1) and (1.2), we have
:<math>
  A = \cfrac{\sqrt{12} c \cos\phi}{3+\sin\phi} = \cfrac{6 c \cos\phi}{\sqrt{3}(3+\sin\phi)} ~;~~ B = \cfrac{2\sin\phi}{\sqrt{3}(3+\sin\phi)}
</math>
These are the expressions for <math>A,B</math> in terms of <math>c,\phi</math>.


On the other hand if the Drucker–Prager surface inscribes the Mohr–Coulomb surface, then matching the two surfaces at <math>\theta=0</math> gives
:<math>
  A = \cfrac{6 c \cos\phi}{\sqrt{3}(3-\sin\phi)} ~;~~ B = \cfrac{2\sin\phi}{\sqrt{3}(3-\sin\phi)}
</math>
[[Image:MC DP Yield Surface 3Da.png|300px|left|thumb|Comparison of Drucker–Prager and Mohr–Coulomb (inscribed) yield surfaces in the <math>\pi</math>-plane for <math>c = 2, \phi = 20^\circ</math>]]
[[Image:MC DP Yield Surface 3Db.png|300px|none|thumb|Comparison of Drucker–Prager and Mohr–Coulomb (circumscribed) yield surfaces in the <math>\pi</math>-plane for <math>c = 2, \phi = 20^\circ</math>]]
|}
{| border="0"
|-
| valign="bottom"|
[[Image:Drucker Prager Yield Surface 3Db.png|300px|none|thumb|Figure 2: Drucker–Prager yield surface in the <math>\pi</math>-plane for <math>c = 2, \phi = 20^\circ</math>]]
|
|
|valign="bottom"|
[[Image:MC DP Yield Surface sig1sig2.png|300px|none|thumb|Figure 3: Trace of the Drucker–Prager and Mohr–Coulomb yield surfaces in the <math>\sigma_1-\sigma_2</math>-plane for <math>c = 2, \phi = 20^\circ</math>. Yellow = Mohr–Coulomb, Cyan = Drucker–Prager.]]
|-
|}


== Drucker–Prager model for polymers ==
* accessibility:
The Drucker–Prager model has been used to model polymers such as [[polyoxymethylene]] and [[polypropylene]]{{Fact|date=September 2011}}<ref>Abrate, S. (2008). ''Criteria for yielding or failure of cellular materials''. Journal of Sandwich Structures and Materials, vol. 10. pp. 5–51.</ref>.   For [[polyoxymethylene]] the yield stress is a linear function of the pressure. However, [[polypropylene]] shows a quadratic pressure-dependence of the yield stress.
** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)]
** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]].
** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]].
** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode.


== Drucker–Prager model for foams ==
==Test pages ==
For foams, the GAZT model <ref>Gibson, L.J., [[M. F. Ashby|Ashby, M.F.]], Zhang, J. and Triantafilliou, T.C. (1989). ''Failure surfaces for cellular materials under multi-axial loads. I. Modeling''. International Journal of
Mechanical Sciences, vol. 31, no. 9, pp. 635–665.</ref> uses
:<math>
  A = \pm \cfrac{\sigma_y}{\sqrt{3}} ~;~~ B = \mp \cfrac{1}{\sqrt{3}}~\left(\cfrac{\rho}{5~\rho_s}\right)
</math>
where <math>\sigma_{y}</math> is a critical stress for failure in tension or compression, <math>\rho</math> is the density of the foam, and <math>\rho_s</math> is the density of the base material.


== Extensions of the isotropic Drucker–Prager model ==
To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages:
The Drucker–Prager criterion can also be expressed in the alternative form
*[[Displaystyle]]
:<math>
*[[MathAxisAlignment]]
  J_2 = (A + B~I_1)^2 = a + b~I_1 + c~I_1^2 ~.
*[[Styling]]
</math>
*[[Linebreaking]]
*[[Unique Ids]]
*[[Help:Formula]]


=== Deshpande–Fleck yield criterion ===
*[[Inputtypes|Inputtypes (private Wikis only)]]
The Deshpande–Fleck yield criterion<ref>V. S. Deshpande, and Fleck, N. A. (2001). ''Multi-axial yield behaviour of polymer foams.'' Acta Materialia, vol. 49, no. 10, pp. 1859–1866.</ref> for foams has the form given in above equation.  The parameters <math>a, b, c</math>  for the Deshpande–Fleck criterion are
*[[Url2Image|Url2Image (private Wikis only)]]
:<math>
==Bug reporting==
  a = (1 + \beta^2)~\sigma_y^2 ~,~~
If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de .
  b = 0 ~,~~
  c = -\cfrac{\beta^2}{3}
</math>
where <math>\beta</math> is a parameter<ref><math>\beta= \alpha/3</math> where <math>\alpha</math> is the
quantity used by Deshpande–Fleck</ref> that determines the shape of the yield surface, and <math>\sigma_y</math> is the yield stress in tension or compression.
 
== Anisotropic Drucker–Prager yield criterion ==
An anisotropic form of the Drucker–Prager yield criterion is the Liu–Huang–Stout yield criterion <ref>Liu, C., Huang, Y., and Stout, M. G. (1997). ''On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study.'' Acta Materialia, vol. 45, no. 6, pp. 2397–2406</ref>.  This yield criterion is an extension of the [[Hill yield criteria|generalized Hill yield criterion]] and has the form
:<math>
  \begin{align}
    f := & \sqrt{F(\sigma_{22}-\sigma_{33})^2+G(\sigma_{33}-\sigma_{11})^2+H(\sigma_{11}-\sigma_{22})^2 
        + 2L\sigma_{23}^2+2M\sigma_{31}^2+2N\sigma_{12}^2}\\
        &  + I\sigma_{11}+J\sigma_{22}+K\sigma_{33} - 1 \le 0
  \end{align}
</math>
 
The coefficients <math>F,G,H,L,M,N,I,J,K</math> are
:<math>
  \begin{align}
    F = & \cfrac{1}{2}\left[\Sigma_2^2 + \Sigma_3^2 - \Sigma_1^2\right] ~;~~
    G = \cfrac{1}{2}\left[\Sigma_3^2 + \Sigma_1^2 - \Sigma_2^2\right] ~;~~
    H = \cfrac{1}{2}\left[\Sigma_1^2 + \Sigma_2^2 - \Sigma_3^2\right] \\
    L = & \cfrac{1}{2(\sigma_{23}^y)^2} ~;~~
    M = \cfrac{1}{2(\sigma_{31}^y)^2} ~;~~
    N = \cfrac{1}{2(\sigma_{12}^y)^2} \\
    I = & \cfrac{\sigma_{1c}-\sigma_{1t}}{2\sigma_{1c}\sigma_{1t}} ~;~~
    J = \cfrac{\sigma_{2c}-\sigma_{2t}}{2\sigma_{2c}\sigma_{2t}} ~;~~
    K = \cfrac{\sigma_{3c}-\sigma_{3t}}{2\sigma_{3c}\sigma_{3t}}
  \end{align}
</math>
where
:<math>
  \Sigma_1 := \cfrac{\sigma_{1c}+\sigma_{1t}}{2\sigma_{1c}\sigma_{1t}} ~;~~
  \Sigma_2 := \cfrac{\sigma_{2c}+\sigma_{2t}}{2\sigma_{2c}\sigma_{2t}} ~;~~
  \Sigma_3 := \cfrac{\sigma_{3c}+\sigma_{3t}}{2\sigma_{3c}\sigma_{3t}}
</math>
and <math>\sigma_{ic}, i=1,2,3</math> are the uniaxial yield stresses in '''compression''' in the three principal directions of anisotropy, <math>\sigma_{it}, i=1,2,3</math> are the uniaxial yield stresses in '''tension''', and  <math>\sigma_{23}^y, \sigma_{31}^y, \sigma_{12}^y</math> are the yield stresses in pure shear.  It has been assumed in the above that the quantities <math>\sigma_{1c},\sigma_{2c},\sigma_{3c}</math> are positive and <math>\sigma_{1t},\sigma_{2t},\sigma_{3t}</math> are negative.
 
== The Drucker yield criterion ==
The Drucker–Prager criterion should not be confused with the earlier Drucker criterion <ref> Drucker, D. C. (1949) '' Relations of experiments to mathematical theories of plasticity'', Journal of Applied Mechanics, vol. 16, pp. 349–357.</ref> which is independent of the pressure (<math>I_1</math>). The Drucker yield criterion has the form
:<math>
  f := J_2^3 - \alpha~J_3^2 - k^2 \le 0
</math>
where <math>J_2</math> is the second invariant of the deviatoric stress, <math>J_3</math> is the third invariant of the deviatoric stress, <math>\alpha</math> is a constant that lies between -27/8 and 9/4 (for the yield surface to be convex), <math>k</math> is a constant that varies with the value of <math>\alpha</math>.  For <math>\alpha=0</math>, <math>k^2 = \cfrac{\sigma_y^6}{27}</math> where <math>\sigma_y</math> is the yield stress in uniaxial tension.
 
== Anisotropic Drucker Criterion ==
An anisotropic version of the Drucker yield criterion is the Cazacu–Barlat (CZ) yield criterion <ref>Cazacu, O. and Barlat, F. (2001). ''Generalization of Drucker's yield criterion to orthotropy.'' Mathematics and Mechanics of Solids, vol. 6, no. 6, pp. 613–630.</ref> which has the form
:<math>
  f := (J_2^0)^3 - \alpha~(J_3^0)^2 - k^2 \le 0
</math>
where <math>J_2^0, J_3^0</math> are generalized forms of the deviatoric stress and are defined as
:<math>
  \begin{align}
    J_2^0  := & \cfrac{1}{6}\left[a_1(\sigma_{22}-\sigma_{33})^2+a_2(\sigma_{33}-\sigma_{11})^2 +a_3(\sigma_{11}-\sigma_{22})^2\right] + a_4\sigma_{23}^2 + a_5\sigma_{31}^2 + a_6\sigma_{12}^2 \\
    J_3^0  := & \cfrac{1}{27}\left[(b_1+b_2)\sigma_{11}^3 +(b_3+b_4)\sigma_{22}^3 + \{2(b_1+b_4)-(b_2+b_3)\}\sigma_{33}^3\right] \\
      & -\cfrac{1}{9}\left[(b_1\sigma_{22}+b_2\sigma_{33})\sigma_{11}^2+(b_3\sigma_{33}+b_4\sigma_{11})\sigma_{22}^2
  + \{(b_1-b_2+b_4)\sigma_{11}+(b_1-b_3+b_4)\sigma_{22}\}\sigma_{33}^2\right] \\
    & + \cfrac{2}{9}(b_1+b_4)\sigma_{11}\sigma_{22}\sigma_{33} + 2 b_{11}\sigma_{12}\sigma_{23}\sigma_{31}\\
    & - \cfrac{1}{3}\left[\{2b_9\sigma_{22}-b_8\sigma_{33}-(2b_9-b_8)\sigma_{11}\}\sigma_{31}^2+
      \{2b_{10}\sigma_{33}-b_5\sigma_{22}-(2b_{10}-b_5)\sigma_{11}\}\sigma_{12}^2 \right.\\
      & \qquad \qquad\left. \{(b_6+b_7)\sigma_{11} - b_6\sigma_{22}-b_7\sigma_{33}\}\sigma_{23}^2
    \right]
  \end{align}
</math>
 
=== Cazacu–Barlat yield criterion for plane stress ===
For thin sheet metals, the state of stress can be approximated as [[plane stress]].  In that case the Cazacu–Barlat yield criterion reduces to its two-dimensional version with
:<math>
  \begin{align}
    J_2^0  = & \cfrac{1}{6}\left[(a_2+a_3)\sigma_{11}^2+(a_1+a_3)\sigma_{22}^2-2a_3\sigma_1\sigma_2\right]+ a_6\sigma_{12}^2 \\
    J_3^0  = & \cfrac{1}{27}\left[(b_1+b_2)\sigma_{11}^3 +(b_3+b_4)\sigma_{22}^3 \right]
      -\cfrac{1}{9}\left[b_1\sigma_{11}+b_4\sigma_{22}\right]\sigma_{11}\sigma_{22}
      + \cfrac{1}{3}\left[b_5\sigma_{22}+(2b_{10}-b_5)\sigma_{11}\right]\sigma_{12}^2
  \end{align}
</math>
 
For thin sheets of metals and alloys, the parameters of the Cazacu–Barlat yield criterion are
{| border="1"
|+ Table 1. '''Cazacu–Barlat yield criterion parameters for sheet metals and alloys'''
! Material !! <math>a_1</math> !! <math>a_2</math> !! <math>a_3</math> !! <math>a_6</math> !! <math>b_1</math> !! <math>b_2</math> !! <math>b_3</math> !! <math>b_4</math> !! <math>b_5</math> !! <math>b_{10}</math> !! <math>\alpha</math>
|-
! 6016-T4 Aluminum Alloy
| 0.815 || 0.815 || 0.334 || 0.42 || 0.04 || -1.205 || -0.958 || 0.306 || 0.153 || -0.02 || 1.4
|-
! 2090-T3 Aluminum Alloy
| 1.05 || 0.823 || 0.586 || 0.96 || 1.44 || 0.061 || -1.302 || -0.281 || -0.375 || 0.445 || 1.285
|}
 
== References ==
<references/>
 
== See also ==
*[[Yield surface]]
*[[Yield (engineering)]]
*[[Plasticity (physics)]]
*[[Failure theory (material)]]
 
[[Category:Plasticity]]
[[Category:Soil mechanics]]
[[Category:Solid mechanics]]
[[Category:Yield criteria]]
 
[[es:Criterio de fluencia de Drucker-Prager]]
[[ru:Критерий прочности Друкера-Прагера]]

Latest revision as of 22:52, 15 September 2019

This is a preview for the new MathML rendering mode (with SVG fallback), which is availble in production for registered users.

If you would like use the MathML rendering mode, you need a wikipedia user account that can be registered here [[1]]

  • Only registered users will be able to execute this rendering mode.
  • Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.

Registered users will be able to choose between the following three rendering modes:

MathML

E=mc2


Follow this link to change your Math rendering settings. You can also add a Custom CSS to force the MathML/SVG rendering or select different font families. See these examples.

Demos

Here are some demos:


Test pages

To test the MathML, PNG, and source rendering modes, please go to one of the following test pages:

Bug reporting

If you find any bugs, please report them at Bugzilla, or write an email to math_bugs (at) ckurs (dot) de .