Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(206 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
[[Image:reinforced solids cube.jpg|thumb|Figure 1: Small cube of a material with reinforcing bars. The cube is cracked and the material above the crack is removed to show the reinforcement that crosses the crack.]]
This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users.


In [[solid mechanics]], a '''reinforced solid''' is a [[brittle]] material that is reinforced by [[ductile]] bars or fibres. A common application is [[reinforced concrete]]. When the concrete cracks the tensile force in a crack is not carried any more by the concrete but by the steel reinforcing bars only. The reinforced concrete will continue to carry the load provided that sufficient reinforcement is present. A typical design problem is to find the smallest amount of reinforcement that can carry the [[Stress (mechanics)|stresses]] on a small cube (Fig. 1). This can be formulated as an [[Mathematical optimization|optimization]] problem.
If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]]
* Only registered users will be able to execute this rendering mode.
* Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.


==Optimization problem==
Registered users will be able to choose between the following three rendering modes:


The reinforcement is directed in the x, y and z direction. The reinforcement ratio is defined in a cross-section of a reinforcing bar as the reinforcement area <math>A_{r}</math> over the total area <math>A</math>, which is the brittle material area plus the reinforcement area.
'''MathML'''
:<math forcemathmode="mathml">E=mc^2</math>


:<math>\rho_{x}</math> = <math>A_{rx}</math> / <math>A_{x}</math>
<!--'''PNG'''  (currently default in production)
:<math forcemathmode="png">E=mc^2</math>


:<math>\rho_{y}</math> = <math>A_{ry}</math> / <math>A_{y}</math>
'''source'''
:<math forcemathmode="source">E=mc^2</math> -->


:<math>\rho_{z}</math> = <math>A_{rz}</math> / <math>A_{z}</math>
<span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples].


In case of reinforced concrete the reinforcement ratios are usually between 0.1% and 2%. The [[yield stress]] of the reinforcement is denoted by <math>f_{y}</math>. The [[Stress (mechanics)|stress tensor]] of the brittle material is
==Demos==


:<math>
Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]:
\left[{\begin{matrix}
\sigma _{xx} - \rho_{x} f_{y} & \sigma _{xy} & \sigma _{xz} \\
\sigma _{xy} & \sigma _{yy} - \rho_{y} f_{y} & \sigma _{yz} \\
\sigma _{xz} & \sigma _{yz} & \sigma _{zz} - \rho_{z} f_{y} \\
\end{matrix}}\right]
</math>.


This can be interpreted as the stress tensor of the composite material minus the stresses carried by the reinforcement at yielding. This formulation is accurate for reinforcement ratio's smaller than 5%. It is assumed that the brittle material has no tensile strength. (In case of reinforced concrete this assumption is necessary because the concrete has small shrinkage cracks.) Therefore, the [[principal stresses]] of the brittle material need to be compression. The principal stresses of a stress tensor are its [[eigenvalues]].


The optimization problem is formulated as follows. Minimize <math>\rho_{x}</math> + <math>\rho_{y}</math> + <math>\rho_{z}</math> subject to all eigenvalues of the brittle material stress tensor are less than or equal to zero ([[Positive-definite matrix|negative-semidefinite]]). Additional constraints are <math>\rho_{x}</math> ≥ 0, <math>\rho_{y}</math> ≥ 0, <math>\rho_{z}</math> ≥ 0.
* accessibility:
** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)]
** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]].
** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]].
** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode.


==Solution==
==Test pages ==


The solution to this problem can be presented in a form most suitable for hand calculations.<ref name="A"/><ref name="N"/> It can be presented in graphical form.<ref name="F"/> It can also be presented in a form most suitable for computer implementation.<ref name="H1"/><ref name="H2"/> In this article the latter method is shown.
To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages:
*[[Displaystyle]]
*[[MathAxisAlignment]]
*[[Styling]]
*[[Linebreaking]]
*[[Unique Ids]]
*[[Help:Formula]]


There are 12 possible reinforcement solutions to this problem, which are shown in the table below. Every row contains a possible solution. The first column contains the number of a solution. The second column gives conditions for which a solution is valid. Columns 3, 4 and 5 give the formulas for calculating the reinforcement ratios.
*[[Inputtypes|Inputtypes (private Wikis only)]]
 
*[[Url2Image|Url2Image (private Wikis only)]]
{| class="wikitable"
==Bug reporting==
|-
If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de .
|  || Condition || <math>\rho_{x}</math> <math>f_{y} </math> || <math>\rho_{y}</math> <math>f_{y}</math>  || <math>\rho_{z}</math> <math>f_{y}</math>
|-
| 1 || <math>I_{1}</math> ≤ 0, <math>I_{2}</math> ≥ 0, <math>I_{3}</math> ≤ 0 || 0 || 0 || 0
|-
| 2 || <math>\sigma_{yy}\sigma_{zz} - \sigma^2_{yz}</math> > 0<br/><math>I_{1}(\sigma_{yy}\sigma_{zz} - \sigma^2_{yz}) - I_{3}</math> ≤ 0<br/><math>I_{2}(\sigma_{yy}\sigma_{zz} - \sigma^2_{yz}) - I_{3}(\sigma_{yy}+\sigma_{zz})</math> ≥ 0 || <math>\frac{I_{3}}{\sigma_{yy} \sigma_{zz} - \sigma^2_{yz}}</math> || 0 || 0
|-
| 3 || <math>\sigma_{xx}\sigma_{zz} - \sigma^2_{xz}</math> > 0<br/><math>I_{1}(\sigma_{xx}\sigma_{zz} - \sigma^2_{xz}) - I_{3}</math> ≤ 0<br/><math>I_{2}(\sigma_{xx}\sigma_{zz} - \sigma^2_{xz}) - I_{3}(\sigma_{xx}+\sigma_{zz})</math> ≥ 0 || 0 || <math>\frac{I_{3}}{\sigma_{xx} \sigma_{zz} - \sigma^2_{xz}}</math> || 0
|-
| 4 || <math>\sigma_{xx}\sigma_{yy} - \sigma^2_{xy}</math> > 0<br/><math>I_{1}(\sigma_{xx}\sigma_{yy} - \sigma^2_{xy}) - I_{3}</math> ≤ 0<br/><math>I_{2}(\sigma_{xx}\sigma_{yy} - \sigma^2_{xy}) - I_{3}(\sigma_{xx}+\sigma_{yy})</math> ≥ 0 || 0 || 0 || <math>\frac{I_{3}}{\sigma_{xx} \sigma_{yy} - \sigma^2_{xy}}</math>
|-
| 5 || <math>\sigma_{xx}<0</math> || 0 || <math>\sigma_{yy}- \frac{\sigma^2_{xy}}{\sigma_{xx}} +|\sigma_{yz}-\frac{\sigma_{xz}\sigma_{xy}}{\sigma_{xx}}|</math> || <math>\sigma_{zz}-\frac{\sigma^2_{xz}}{\sigma_{xx}}+|\sigma_{yz}-\frac{\sigma_{xz}\sigma_{xy}}{\sigma_{xx}}|</math>
|-
| 6 || <math>\sigma_{yy}<0</math> || <math>\sigma_{xx}-\frac{\sigma^2_{xy}}{\sigma_{yy}} +|\sigma_{xz}-\frac{\sigma_{yz}\sigma_{xy}}{\sigma_{yy}}|</math> || 0 || <math>\sigma_{zz}-\frac{\sigma^2_{yz}}{\sigma_{yy}} +|\sigma_{xz}-\frac{\sigma_{yz}\sigma_{xy}}{\sigma_{yy}}|</math>
|-
| 7 || <math>\sigma_{zz}<0</math> || <math>\sigma_{xx}-\frac{\sigma^2_{xz}}{\sigma_{zz}} +|\sigma_{xy}-\frac{\sigma_{yz}\sigma_{xz}}{\sigma_{zz}}|</math> || <math>\sigma_{yy} -\frac{\sigma^2_{yz}}{\sigma_{zz}} +|\sigma_{xy} -\frac{\sigma_{xz}\sigma_{yz}}{\sigma_{zz}}|</math> || 0
|-
| 8 || <math>\sigma_{yz} + \sigma_{xz} + \sigma_{xy}</math> ≥ 0<br/><math>\sigma_{xz}\sigma_{xy} + \sigma_{yz}\sigma_{xy} + \sigma_{yz}\sigma_{xz}</math> ≥ 0<br/> || <math>\sigma_{xx} + \sigma_{xz} + \sigma_{xy}</math> || <math>\sigma_{yy} + \sigma_{yz} + \sigma_{xy}</math> || <math>\sigma_{zz} + \sigma_{yz} + \sigma_{xz}</math>
|-
| 9 || <math>- \sigma_{yz} - \sigma_{xz} + \sigma_{xy}</math> ≥ 0<br/><math>- \sigma_{xz}\sigma_{xy} - \sigma_{yz}\sigma_{xy} + \sigma_{yz}\sigma_{xz}</math> ≥ 0<br/> || <math>\sigma_{xx} - \sigma_{xz} + \sigma_{xy}</math> || <math>\sigma_{yy} - \sigma_{yz} + \sigma_{xy}</math> || <math>\sigma_{zz} - \sigma_{yz} - \sigma_{xz}</math>
|-
| 10 || <math>\sigma_{yz} - \sigma_{xz} - \sigma_{xy}</math> ≥ 0<br/><math>\sigma_{xz}\sigma_{xy} - \sigma_{yz}\sigma_{xy} - \sigma_{yz}\sigma_{xz}</math> ≥ 0<br/> || <math>\sigma_{xx} - \sigma_{xz} - \sigma_{xy}</math> || <math>\sigma_{yy} + \sigma_{yz} - \sigma_{xy}</math> || <math>\sigma_{zz} + \sigma_{yz} - \sigma_{xz}</math>
|-
| 11 || <math>- \sigma_{yz} + \sigma_{xz} - \sigma_{xy}</math> ≥ 0<br/><math>- \sigma_{xz}\sigma_{xy} + \sigma_{yz}\sigma_{xy} - \sigma_{yz}\sigma_{xz}</math> ≥ 0<br/> || <math>\sigma_{xx} + \sigma_{xz} - \sigma_{xy}</math> || <math>\sigma_{yy} - \sigma_{yz} - \sigma_{xy}</math> || <math>\sigma_{zz} - \sigma_{yz} + \sigma_{xz}</math>
|-
| 12 || <math>\sigma_{xy}\sigma_{xz}\sigma_{yz}<0</math> || <math>\sigma_{xx} - \frac{\sigma_{xz}\sigma_{xy}}{\sigma_{yz}}</math> || <math>\sigma_{yy} - \frac{\sigma_{yz}\sigma_{xy}}{\sigma_{xz}}</math> || <math>\sigma_{zz} - \frac{\sigma_{yz}\sigma_{xz}}{\sigma_{xy}}</math>
|-
|}
 
<math>I_{1}</math>, <math>I_{2}</math> and <math>I_{3}</math> are the [[Stress (mechanics)|stress invariants]] of the composite material stress tensor.
 
The algorithm for obtaining the right solution is simple. Compute the reinforcement ratios of each possible solution that fulfills the conditions. Further ignore solutions with a reinforcement ratio less than zero. Compute the values of <math>\rho_{x}</math> + <math>\rho_{y}</math> + <math>\rho_{z}</math> and select the solution for which this value is smallest. The principal stresses in the brittle material can be computed as the eigenvalues of the brittle material stress tensor, for example by [[Jacobi method|Jacobi's method]].
 
The formulas can be simply checked by substituting the reinforcement ratios in the brittle material stress tensor and calculating the invariants. The first invariant needs to be less than or equal to zero. The second invariant needs to be greater than or equal to zero. These provide the conditions in column 2. For solution 2 to 12, the third invariant needs to be zero.<ref name="F"/>
 
==Examples==
 
The table below shows computed reinforcement ratios for 10 stress tensors. The applied reinforcement yield stress is <math>f_{y}</math> = 500 N/mm². The [[Density|mass density]] of the reinforcing bars is 7800&nbsp;kg/m<sup>3</sup>. In the table <math>\sigma_{m}</math> is the computed brittle material stress. <math>m_{r}</math> is the optimised amount of reinforcement.
 
{| class="wikitable"
|- style="height: 30px;"
| width="50pt" | || <math>\sigma_{xx}</math> || <math>\sigma_{yy}</math> || <math>\sigma_{zz}</math> || <math>\sigma_{yz}</math> || <math>\sigma_{xz}</math> || <math>\sigma_{xy}</math> || || <math>\rho_{x}</math> || <math>\rho_{y}</math> || <math>\rho_{z}</math> || <math>\sigma_{m}</math> || <math>m_{r}</math>
|-
| 1 || 1 N/mm²|| 2 N/mm²|| 3 N/mm²|| -4 N/mm²|| 3 N/mm²|| -1 N/mm²|| || 1.00%|| 1.40%|| 2.00%|| -10.65 N/mm² || 343&nbsp;kg/m<sup>3</sup>
|-
| 2 || -5 || 2 || 3 || 4 || 3 || 1 || || 0.00 || 1.36 || 1.88 || -10.31 || 253
|-
| 3 || -5 || -6 || 3 || 4 || 3 || 1 || || 0.00 || 0.00 || 1.69 || -10.15 || 132
|-
| 4 || -5 || -6 || -6 || 4 || 3 || 1 || || 0.00 || 0.00 || 0.00 || -10.44 || 0
|-
| 5 || 1 || 2 || 3 || -4 || -3 || -1 || || 0.60 || 1.00 || 2.00 || -10.58 || 281
|-
| 6 || 1 || -2 || 3 || -4 || 3 || 2 || || 0.50 || 0.13 || 1.80 || -10.17 || 190
|-
| 7 || 1 || 2 || 3 || 4 || 2 || -1 || || 0.40 || 1.00 || 1.80 || -9.36 || 250
|-
| 8 || 2 || -2 || 5 || 2 || -4 || 6 || || 2.40 || 0.40 || 1.40 || -15.21 || 328
|-
| 9 || -3 || -7 || 0 || 2 || -4 || 6 || || 0.89 || 0.00 || 0.57 || -14.76 || 114
|-
| 10 || 3 || 0 || 10 || 0 || 5 || 0 || || 1.60 || 0.00 || 3.00 || -10.00 || 359
|-
|}
 
==Extension==
 
The above solution can be very useful to design reinforcement, however, it has some practical limitations. The following aspects can be included too if the problem is solved using [[convex optimization]].
*Multiple stress tensors in one point due to multiple loads on the structure instead of only one stress tensor,
*A constraint imposed to crack widths at the surface of the structure,
*Shear stress in the crack (aggregate interlock),
*Reinforcement in other directions than x, y and z,
*Reinforcing bars that already have been placed in the reinforcement design process,
*The whole structure instead of one small material cube in turn.
*Large reinforcement ratio's
*Compression reinforcement
 
Minimise |<math>\rho_{1}</math>| + |<math>\rho_{2}</math>| + |<math>\rho_{3}</math>|.
 
Variables <math>\rho_{xx}</math>, <math>\rho_{yy}</math>, <math>\rho_{zz}</math>, <math>\rho_{yz}</math>, <math>\rho_{xz}</math>, <math>\rho_{xy}</math>.
 
Constraint Eigenvalues of <math>T_{ij}</math> ≤ 0.
 
<math>\rho_{1}</math>, <math>\rho_{2}</math> and <math>\rho_{3}</math> are the eigenvalues of the reinforcement tensor. <math>T_{ij}</math> is the brittle material stress tensor.
 
:<math>
T_{ij} =
\left[{\begin{matrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{xz} & \sigma_{yz} & \sigma_{zz} \\
\end{matrix}}\right]_{ij}
- f_{y} \sum_{k}
 
\left[{\begin{matrix}
\rho_{xx k} & \rho_{xy k} & \rho_{xz k} \\
\rho_{xy k} & \rho_{yy k} & \rho_{yz k} \\
\rho_{xz k} & \rho_{yz k} & \rho_{zz k} \\
\end{matrix}}\right]
- f_{y}
\left[{\begin{matrix}
\rho_{xx} & \rho_{xy} & \rho_{xz} \\
\rho_{xy} & \rho_{yy} & \rho_{yz} \\
\rho_{xz} & \rho_{yz} & \rho_{zz} \\
\end{matrix}}\right]
</math>.
<math>i</math> is the number of the load combination on the structure related to the ultimate limit state.
<math>j</math> is the number of the material point.
<math>k</math> is the number of the rebar that is already placed.
 
==See also==
*[[Reinforced concrete]]
*[[Solid mechanics]]
*[[Structural engineering]]
 
==References==
 
<references>
<ref name="A">Andreasen B.S., Nielsen M.P., Armiering af beton I det tredimesionale tilfælde, Bygningsstatiske meddelelser, Vol. 5 (1985), No. 2-3, pp. 25-79 (in Danish).</ref>
<ref name="F">Foster S.J., Marti P., Mojsilovic N., Design of Reinforced Concrete Solids Using Stress Analysis, ACI Structural Journal, Nov.-Dec. 2003, pp. 758-764.</ref>
<ref name="H1">Hoogenboom P.C.J., De Boer A., "Computation of reinforcement for solid concrete", Heron, Vol. 53 (2008), No. 4. pp. 247-271.</ref>
<ref name="H2">Hoogenboom P.C.J., De Boer A., "Computation of optimal concrete reinforcement in three dimensions", Proceedings of EURO-C 2010, Computational Modelling of Concrete Structures, pp. 639-646, Editors Bicanic et al. Publisher CRC Press, London.</ref>
<ref name="N">Nielsen M.P., Hoang L.C., Limit Analysis and Concrete Plasticity, third edition, CRC Press, 2011.</ref>
</references>
 
[[Category:Composite materials]]
[[Category:Plasticity (physics)]]
[[Category:Structural analysis]]
[[Category:Concrete]]

Latest revision as of 22:52, 15 September 2019

This is a preview for the new MathML rendering mode (with SVG fallback), which is availble in production for registered users.

If you would like use the MathML rendering mode, you need a wikipedia user account that can be registered here [[1]]

  • Only registered users will be able to execute this rendering mode.
  • Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.

Registered users will be able to choose between the following three rendering modes:

MathML

E=mc2


Follow this link to change your Math rendering settings. You can also add a Custom CSS to force the MathML/SVG rendering or select different font families. See these examples.

Demos

Here are some demos:


Test pages

To test the MathML, PNG, and source rendering modes, please go to one of the following test pages:

Bug reporting

If you find any bugs, please report them at Bugzilla, or write an email to math_bugs (at) ckurs (dot) de .