|
|
(475 intermediate revisions by more than 100 users not shown) |
Line 1: |
Line 1: |
| In [[combinatorics|combinatorial]] [[mathematics]], the '''Bell polynomials''', named in honor of [[Eric Temple Bell]], are a [[triangular array]] of polynomials given by
| | This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users. |
|
| |
|
| :<math>B_{n,k}(x_1,x_2,\dots,x_{n-k+1})</math> | | If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]] |
| | * Only registered users will be able to execute this rendering mode. |
| | * Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere. |
|
| |
|
| :<math>=\sum{n! \over j_1!j_2!\cdots j_{n-k+1}!} | | Registered users will be able to choose between the following three rendering modes: |
| \left({x_1\over 1!}\right)^{j_1}\left({x_2\over 2!}\right)^{j_2}\cdots\left({x_{n-k+1} \over (n-k+1)!}\right)^{j_{n-k+1}},</math>
| |
|
| |
|
| where the sum is taken over all sequences ''j''<sub>1</sub>, ''j''<sub>2</sub>, ''j''<sub>3</sub>, ..., ''j''<sub>''n''−''k''+1</sub> of non-negative integers such that
| | '''MathML''' |
| | :<math forcemathmode="mathml">E=mc^2</math> |
|
| |
|
| :<math>j_1+j_2+\cdots = k\quad\mbox{and}\quad j_1+2j_2+3j_3+\cdots=n.</math> | | <!--'''PNG''' (currently default in production) |
| | :<math forcemathmode="png">E=mc^2</math> |
|
| |
|
| ==Complete Bell polynomials== | | '''source''' |
| | :<math forcemathmode="source">E=mc^2</math> --> |
|
| |
|
| The sum
| | <span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples]. |
|
| |
|
| :<math>B_n(x_1,\dots,x_n)=\sum_{k=1}^n B_{n,k}(x_1,x_2,\dots,x_{n-k+1})</math>
| | ==Demos== |
|
| |
|
| is sometimes called the ''n''th '''complete Bell polynomial'''. In order to contrast them with complete Bell polynomials, the polynomials ''B''<sub>''n'', ''k''</sub> defined above are sometimes called "partial" Bell polynomials.
| | Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]: |
|
| |
|
| The complete Bell polynomials satisfy the following identity
| |
|
| |
|
| :<math>B_n(x_1,\dots,x_n) = \det\begin{bmatrix}x_1 & {n-1 \choose 1} x_2 & {n-1 \choose 2}x_3 & {n-1 \choose 3} x_4 & {n-1 \choose 4} x_5 & \cdots & \cdots & x_n \\ \\ | | * accessibility: |
| -1 & x_1 & {n-2 \choose 1} x_2 & {n-2 \choose 2} x_3 & {n-2 \choose 3} x_4 & \cdots & \cdots & x_{n-1} \\ \\ | | ** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]] |
| 0 & -1 & x_1 & {n-3 \choose 1} x_2 & {n-3 \choose 2} x_3 & \cdots & \cdots & x_{n-2} \\ \\
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)] |
| 0 & 0 & -1 & x_1 & {n-4 \choose 1} x_2 & \cdots & \cdots & x_{n-3} \\ \\
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)] |
| 0 & 0 & 0 & -1 & x_1 & \cdots & \cdots & x_{n-4} \\ \\
| | ** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)] |
| 0 & 0 & 0 & 0 & -1 & \cdots & \cdots & x_{n-5} \\ \\
| | ** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]]. |
| \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \\
| | ** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]]. |
| 0 & 0 & 0 & 0 & 0 & \cdots & -1 & x_1 \end{bmatrix}.</math>
| | ** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode. |
|
| |
|
| ==Combinatorial meaning== | | ==Test pages == |
|
| |
|
| If the integer ''n'' is [[integer partition|partitioned]] into a sum in which "1" appears ''j''<sub>1</sub> times, "2" appears ''j''<sub>2</sub> times, and so on, then the number of [[partition of a set|partitions of a set]] of size ''n'' that collapse to that partition of the integer ''n'' when the members of the set become indistinguishable is the corresponding coefficient in the polynomial.
| | To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages: |
| | *[[Displaystyle]] |
| | *[[MathAxisAlignment]] |
| | *[[Styling]] |
| | *[[Linebreaking]] |
| | *[[Unique Ids]] |
| | *[[Help:Formula]] |
|
| |
|
| ===Examples===
| | *[[Inputtypes|Inputtypes (private Wikis only)]] |
| | | *[[Url2Image|Url2Image (private Wikis only)]] |
| For example, we have
| | ==Bug reporting== |
| | | If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de . |
| :<math>B_{6,2}(x_1,x_2,x_3,x_4,x_5)=6x_5x_1+15x_4x_2+10x_3^2</math>
| |
| | |
| because there are
| |
| | |
| :6 ways to partition a set of 6 as 5 + 1,
| |
| :15 ways to partition a set of 6 as 4 + 2, and
| |
| :10 ways to partition a set of 6 as 3 + 3.
| |
| | |
| Similarly,
| |
| | |
| :<math>B_{6,3}(x_1,x_2,x_3,x_4)=15x_4x_1^2+60x_3x_2x_1+15x_2^3</math>
| |
| | |
| because there are
| |
| | |
| :15 ways to partition a set of 6 as 4 + 1 + 1,
| |
| :60 ways to partition a set of 6 as 3 + 2 + 1, and
| |
| :15 ways to partition a set of 6 as 2 + 2 + 2.
| |
| | |
| ==Properties==
| |
| | |
| * <math>B_{n,k}(1!,2!,\dots,(n-k+1)!) = \binom{n}{k}\binom{n-1}{k-1} (n-k)!</math> | |
| | |
| ===Stirling numbers and Bell numbers===
| |
| | |
| The value of the Bell polynomial ''B''<sub>''n'',''k''</sub>(''x''<sub>1</sub>,''x''<sub>2</sub>,...) when all ''x''s are equal to 1 is a [[Stirling number of the second kind]]:
| |
| | |
| :<math>B_{n,k}(1,1,\dots)=S(n,k)=\left\{{n\atop k}\right\}.</math>
| |
| | |
| The sum
| |
| | |
| :<math>\sum_{k=1}^n B_{n,k}(1,1,1,\dots) = \sum_{k=1}^n \left\{{n\atop k}\right\}</math>
| |
| | |
| is the ''n''th [[Bell number]], which is the number of partitions of a set of size ''n''.
| |
| | |
| ===Convolution identity===
| |
| | |
| For sequences ''x''<sub>''n''</sub>, ''y''<sub>''n''</sub>, ''n'' = 1, 2, ..., define a sort of [[convolution]] by:
| |
| | |
| :<math>(x \diamondsuit y)_n = \sum_{j=1}^{n-1} {n \choose j} x_j y_{n-j}</math>.
| |
| | |
| Note that the bounds of summation are 1 and ''n'' − 1, not 0 and ''n'' .
| |
| | |
| Let <math>x_n^{k\diamondsuit}\,</math> be the ''n''th term of the sequence
| |
| | |
| :<math>\displaystyle\underbrace{x\diamondsuit\cdots\diamondsuit x}_{k\ \mathrm{factors}}.\,</math>
| |
| | |
| Then
| |
| | |
| :<math>B_{n,k}(x_1,\dots,x_{n-k+1}) = {x_{n}^{k\diamondsuit} \over k!}.\,</math>
| |
| | |
| For example, let us compute <math> B_{4,3}(x_1,x_2) </math>. We have
| |
| | |
| :<math> x = ( x_1 \ , \ x_2 \ , \ x_3 \ , \ x_4 \ , \dots ) </math>
| |
| | |
| :<math> x \diamondsuit x = ( 0,\ 2 x_1^2 \ ,\ 6 x_1 x_2 \ , \ 8 x_1 x_3 + 6 x_2^2 \ , \dots ) </math>
| |
| | |
| :<math> x \diamondsuit x \diamondsuit x = ( 0 \ ,\ 0 \ , \ 6 x_1^3 \ , \ 36 x_1^2 x_2 \ , \dots ) </math>
| |
| | |
| and thus,
| |
| | |
| :<math> B_{4,3}(x_1,x_2) = \frac{ ( x \diamondsuit x \diamondsuit x)_4 }{3!} = 6 x_1^2 x_2. </math>
| |
| | |
| ==Applications of Bell polynomials==
| |
| ===Faà di Bruno's formula===
| |
| {{main|Faà di Bruno's formula}}
| |
| | |
| [[Faà di Bruno's formula]] may be stated in terms of Bell polynomials as follows:
| |
| | |
| :<math>{d^n \over dx^n} f(g(x)) = \sum_{k=0}^n f^{(k)}(g(x)) B_{n,k}\left(g'(x),g''(x),\dots,g^{(n-k+1)}(x)\right).</math>
| |
| | |
| Similarly, a power-series version of Faà di Bruno's formula may be stated using Bell polynomials as follows. Suppose
| |
| | |
| :<math>f(x)=\sum_{n=1}^\infty {a_n \over n!} x^n \qquad
| |
| \mathrm{and} \qquad g(x)=\sum_{n=1}^\infty {b_n \over n!} x^n.</math>
| |
| | |
| Then
| |
| | |
| :<math>g(f(x)) = \sum_{n=1}^\infty
| |
| {\sum_{k=1}^{n} b_k B_{n,k}(a_1,\dots,a_{n-k+1}) \over n!} x^n.</math>
| |
| | |
| In particular, the complete Bell polynomials appear in the exponential of a [[formal power series]]:
| |
| | |
| :<math>\exp\left(\sum_{n=1}^\infty {a_n \over n!} x^n \right) | |
| = \sum_{n=0}^\infty {B_n(a_1,\dots,a_n) \over n!} x^n.</math>
| |
| | |
| ===Moments and cumulants===
| |
| | |
| The sum
| |
| | |
| :<math>B_n(\kappa_1,\dots,\kappa_n)=\sum_{k=1}^n B_{n,k}(\kappa_1,\dots,\kappa_{n-k+1})</math>
| |
| | |
| is the ''n''th [[moment (mathematics)|moment]] of a [[probability distribution]] whose first ''n'' [[cumulant]]s are κ<sub>1</sub>, ..., κ<sub>''n''</sub>. In other words, the ''n''th moment is the ''n''th complete Bell polynomial evaluated at the first ''n'' cumulants.
| |
| | |
| ===Representation of polynomial sequences of binomial type=== | |
| | |
| For any sequence ''a''<sub>1</sub>, ''a''<sub>2</sub>, ''a''<sub>3</sub>, ... of scalars, let
| |
| | |
| :<math>p_n(x)=\sum_{k=1}^n B_{n,k}(a_1,\dots,a_{n-k+1}) x^k.</math>
| |
| | |
| Then this polynomial sequence is of [[binomial type]], i.e. it satisfies the binomial identity
| |
| | |
| :<math>p_n(x+y)=\sum_{k=0}^n {n \choose k} p_k(x) p_{n-k}(y)</math>
| |
| | |
| for ''n'' ≥ 0. In fact we have this result:
| |
| | |
| :'''Theorem:''' All polynomial sequences of binomial type are of this form.
| |
| | |
| If we let
| |
| | |
| :<math>h(x)=\sum_{n=1}^\infty {a_n \over n!} x^n</math>
| |
| | |
| taking this power series to be purely formal, then for all ''n'',
| |
| | |
| :<math>h^{-1}\left( {d \over dx}\right) p_n(x) = n p_{n-1}(x).</math>
| |
| | |
| ==Software==
| |
| | |
| * Bell polynomials, complete Bell polynomials and generalized Bell polynomials are implemented in [[Mathematica]] as [http://reference.wolfram.com/mathematica/ref/BellY.html BellY].
| |
| | |
| ==See also==
| |
| | |
| * [[Bell matrix]]
| |
| * [[Exponential formula]]
| |
| | |
| ==References==
| |
| * {{cite journal | author=[[Eric Temple Bell]] |title=Partition Polynomials | jstor=1967979 |journal=[[Annals of Mathematics]] |volume=29 |issue=1/4 |year=1927–1928 |pages=38–46 |doi=10.2307/1967979 | mr=1502817 }}
| |
| * {{cite book |author=Louis Comtet |title=Advanced Combinatorics: The Art of Finite and Infinite Expansions |publisher=Reidel Publishing Company |place=Dordrecht, Holland / Boston, U.S. |year=1974}}
| |
| * {{cite book |author=[[Steven Roman]] |title=''The Umbral Calculus'' |publisher=[[Dover Publications]]}}
| |
| * {{cite journal |author=Vassily G. Voinov, Mikhail S. Nikulin |title=On power series, Bell polynomials, Hardy-Ramanujan-Rademacher problem and its statistical applications |journal= Kybernetika | volume=30 |issue=3 |pages=343–358 |year=1994 |issn=00235954}}
| |
| * {{cite book | first=George E. | last=Andrews | authorlink=George Andrews (mathematician) | title=The Theory of Partitions | series=Cambridge Mathematical Library | publisher=[[Cambridge University Press]] | year=1998 | edition=1st pbk | isbn=0-521-63766-X | pages=204–211 }}
| |
| * {{cite journal |author=Silvia Noschese, Paolo E. Ricci |title=Differentiation of Multivariable Composite Functions and Bell Polynomials |journal=Journal of Computational Analysis and Applications | volume=5 |issue=3 |pages=333–340 |year=2003 |doi=10.1023/A:1023227705558}}
| |
| *{{ cite journal|first1=Moncef
| |
| |last1=Abbas
| |
| |first2=Sadek
| |
| |last2=Bouroubi
| |
| |title=On new identities for Bell's polynomial
| |
| |journal=Disc. Math
| |
| |year=2005
| |
| |number=293
| |
| |pages=5-10
| |
| |mr=2136048
| |
| |doi=10.1016/j.disc.2004.08.023
| |
| }}
| |
| * {{cite journal |author=Khristo N. Boyadzhiev |title=Exponential Polynomials, Stirling Numbers, and Evaluation of Some Gamma Integrals |journal=[[Abstract and Applied Analysis]] |volume=2009 |pages=Article ID 168672 |year=2009 |doi=10.1155/2009/168672}} (contains also elementary review of the concept Bell-polynomials)
| |
| * {{cite arxiv| author=V. V. Kruchinin
| |
| |year=2011|eprint=1104.5065
| |
| |title=Derivation of Bell Polynomials of the Second Kind}}
| |
| * {{cite journal
| |
| |first1=Martin
| |
| |last1=Griffiths
| |
| |title=Families of sequences from a class of multinomial sums
| |
| |journal=Journal of Integer Sequences
| |
| |url=http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Griffiths/griffiths20.html
| |
| |year=2012
| |
| |mr=2872465
| |
| |volume=15
| |
| }}
| |
| | |
| {{DEFAULTSORT:Bell Polynomials}}
| |
| [[Category:Enumerative combinatorics]]
| |
| [[Category:Polynomials]]
| |
| | |
| [[fr:Polynômes de Bell]]
| |
| [[ru:Полиномы Белла]]
| |