Box topology: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ZéroBot
m r2.7.1) (robot Adding: ko:상자 위상
 
en>999Bedbugs
m added link
Line 1: Line 1:
Ed is what people contact me and my spouse doesn't like it at all. It's not a common factor but what she likes doing is to perform domino but she doesn't have the time lately. Since I was eighteen I've been working as a bookkeeper but quickly my spouse and I will begin our own company. Mississippi is the only location I've been residing in but I will have to transfer in a yr or two.<br><br>my homepage :: psychic phone ([http://citatyizfilmov.ru/users/RC82 http://citatyizfilmov.ru/users/RC82])
[[file:F2 Cayley Graph.png|thumb|The [[Cayley graph]] of a [[free group]] with two generators. This is a [[hyperbolic group]] whose [[Gromov boundary]] is a [[Cantor set]]. Hyperbolic groups and their boundaries are important topics in geometric group theory, as are Cayley graphs.]]
 
'''Geometric group theory''' is an area in [[mathematics]] devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and [[topology|topological]] and [[geometry|geometric]] properties of spaces on which these groups [[Group action|act]] (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces).
 
Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the [[Cayley graph]]s of groups, which, in addition to the graph structure, are endowed with the structure of a [[metric space]], given by the so-called [[word metric]].
 
Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with [[low-dimensional topology]], [[hyperbolic geometry]], [[algebraic topology]], [[computational group theory]] and [[differential geometry]]. There are also substantial connections with [[computational complexity theory|complexity theory]], [[mathematical logic]], the study of [[Lie Group]]s and their discrete subgroups, [[dynamical systems]], [[probability theory]], [[K-theory]], and other areas of mathematics.
In the introduction to his book ''Topics in Geometric Group Theory'', [[Pierre de la Harpe]] wrote: "One of my personal beliefs is that fascination with symmetries and groups is one way of coping with frustrations of life's limitations: we like to recognize symmetries which allow us to recognize more than what we can see. In this sense the study of geometric group theory is a part of culture, and reminds me of several things that [[Georges de Rham]] practices on many occasions, such as teaching mathematics, reciting [[Stéphane Mallarmé|Mallarmé]], or greeting a friend" (page 3 in <ref>P. de la Harpe, [http://books.google.com/books?id=60fTzwfqeQIC&pg=PP1&dq=de+la+Harpe,+Topics+in+geometric+group+theory ''Topics in geometric group theory''.] Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6, ISBN 0-226-31721-8.</ref>).
 
== History ==
 
Geometric group theory grew out of '''[[combinatorial group theory]]''' that largely studied properties of [[discrete group]]s via analyzing [[Presentation of a group|group presentations]], that describe groups as [[quotient group|quotients]] of [[free group]]s; this field was first systematically studied by [[Walther von Dyck]], student of [[Felix Klein]], in the early 1880s,<ref name="stillwell374">{{Citation
| publisher = Springer
| isbn = 978-0-387-95336-6
| last = Stillwell
| first = John
| title = Mathematics and its history
| year = 2002
| page = [http://books.google.com/books?id=WNjRrqTm62QC&pg=PA374 374]
}}</ref> while an early form is found in the 1856 [[icosian calculus]] of [[William Rowan Hamilton]], where he studied the [[icosahedral symmetry]] group via the edge graph of the [[dodecahedron]]. Currently combinatorial group theory as an area is largely subsumed by geometric group theory. Moreover, the term "geometric group theory" came to often include studying discrete groups using probabilistic, measure-theoretic, arithmetic, analytic and other approaches that lie outside of the traditional combinatorial group theory arsenal.
 
In the first half of the 20th century, pioneering work of [[Max Dehn|Dehn]], [[Jakob Nielsen (mathematician)|Nielsen]], [[Kurt Reidemeister|Reidemeister]] and [[Otto Schreier|Schreier]], [[J. H. C. Whitehead|Whitehead]], [[Egbert van Kampen|van Kampen]], amongst others, introduced some topological and geometric ideas into the study of discrete groups.<ref>Bruce Chandler and Wilhelm Magnus. ''The history of combinatorial group theory. A case study in the history of ideas.'' Studies in the History of Mathematics and Physical Sciences, vo. 9. Springer-Verlag, New York, 1982.</ref> Other precursors of geometric group theory include [[small cancellation theory]] and [[Bass&ndash;Serre theory]].
Small cancellation theory was introduced by [[Martin Grindlinger]] in 1960s<ref>M. Greendlinger, [http://www3.interscience.wiley.com/journal/113397463/abstract?CRETRY=1&SRETRY=0 ''Dehn's algorithm for the word problem.''] Communications in Pure and Applied Mathematics, vol. 13 (1960), pp. 67–83.</ref><ref>M. Greendlinger, ''An analogue of a theorem of Magnus''. Archiv der Mathematik, vol. 12 (1961), pp. 94–96.</ref> and further developed by [[Roger Lyndon]] and [[Paul Schupp]].<ref>[[Roger Lyndon|R. Lyndon]] and P. Schupp, [http://books.google.com/books?id=aiPVBygHi_oC&printsec=frontcover&dq=lyndon+and+schupp ''Combinatorial Group Theory''], Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000.</ref> It studies [[van Kampen diagram]]s, corresponding to finite group presentations, via combinatorial curvature conditions and derives algebraic and algorithmic properties of groups from such analysis. Bass&ndash;Serre theory, introduced in the 1977 book of Serre,<ref>J.-P. Serre, ''Trees''. Translated from the 1977 French original by John Stillwell. Springer-Verlag, Berlin-New York, 1980. ISBN 3-540-10103-9.</ref> derives structural algebraic information about groups by studying group actions on [[Tree (graph theory)|simplicial trees]].
External precursors of geometric group theory include the study of lattices in Lie Groups, especially [[Mostow rigidity theorem]], the study of [[Kleinian group]]s, and the progress achieved in [[low-dimensional topology]] and hyperbolic geometry in 1970s and early 1980s, spurred, in particular, by [[William Thurston|Thurston's]] [[Geometrization conjecture|Geometrization program]].
 
The emergence of geometric group theory as a distinct area of mathematics is usually traced to late 1980s and early 1990s. It was spurred by the 1987 monograph of [[Mikhail Gromov (mathematician)|Gromov]] ''"Hyperbolic groups"''<ref name="M. Gromov, 1987, pp. 75–263">M. Gromov, ''Hyperbolic Groups'', in "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.</ref> that introduced the notion of a [[hyperbolic group]] (also known as ''word-hyperbolic'' or ''Gromov-hyperbolic'' or ''negatively curved'' group), which captures the idea of a finitely generated group having large-scale negative curvature, and by his subsequent monograph ''Asymptotic Invariants of Inifinite Groups'',<ref>M. Gromov, ''"Asymptotic invariants of infinite groups"'', in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.</ref> that outlined Gromov's program of understanding discrete groups up to [[Glossary of Riemannian and metric geometry#Q|quasi-isometry]]. The work of Gromov had a transformative effect on the study of discrete groups<ref>I. Kapovich and N. Benakli. ''Boundaries of hyperbolic groups.'' Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002. From the Introduction:" In the last fifteen years geometric group theory has enjoyed fast growth and rapidly increasing influence. Much of this progress has been spurred by remarkable work of M. L. Gromov [in Essays in group theory, 75–263, Springer, New York, 1987; in Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, Cambridge Univ. Press, Cambridge, 1993], who has advanced the theory of word-hyperbolic groups (also referred to as Gromov-hyperbolic or negatively curved groups)."</ref><ref>B. H. Bowditch, ''Hyperbolic 3-manifolds and the geometry of the curve complex.'' European Congress of Mathematics, pp. 103–115, Eur. Math. Soc., Zürich, 2005. From the Introduction:" Much of this can be viewed in the context of geometric group theory. This subject has seen very rapid growth over the last twenty years or so, though of course, its antecedents can be traced back much earlier. [...] The work of Gromov has been a major driving force in this. Particularly relevant here is his seminal paper on hyperbolic groups [Gr]."</ref><ref>G. Elek. ''The mathematics of Misha Gromov.'' Acta Mathematica Hungarica, vol. 113 (2006), no. 3, pp. 171–185. From p. 181:  "Gromov's pioneering work on the geometry of discrete metric spaces and his quasi-isometry program became the locomotive of geometric group theory from the early eighties."</ref> and the phrase "geometric group theory" started appearing soon afterwards. (see, e.g.,<ref>Geometric group theory. Vol. 1. Proceedings of the symposium held at Sussex University, Sussex, July 1991. Edited by Graham A. Niblo and Martin A. Roller. London Mathematical Society Lecture Note Series, 181. Cambridge University Press, Cambridge, 1993. ISBN 0-521-43529-3.</ref>).
 
== Modern themes and developments ==
{{Prose|section|date=January 2012}}
 
Notable themes and developments in geometric group theory in 1990s and 2000s include:
 
*Gromov's program to study quasi-isometric properties of groups.
:A particularly influential broad theme in the area is [[Mikhail Gromov (mathematician)|Gromov]]'s program<ref>M. Gromov, ''Asymptotic invariants of infinite groups'', in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.</ref> of classifying [[Generating set of a group#Finitely generated group|finitely generated groups]] according to their large scale geometry. Formally, this means classifying finitely generated groups with their [[word metric]] up to [[Glossary of Riemannian and metric geometry#Q|quasi-isometry]]. This program involves:
:#The study of properties that are invariant under [[quasi-isometry]]. Examples of such properties of finitely generated groups include: the [[growth rate (group theory)|growth rate]] of a finitely generated group; the [[Dehn function#Isoperimetric function|isoperimetric function]] or [[van Kampen diagram|Dehn function]] of a [[finitely presented group]]; the number of ends of a group; [[hyperbolic group|hyperbolicity of a group]]; the [[homeomorphism]] type of the [[Gromov boundary]] of a hyperbolic group;<ref>I. Kapovich and N. Benakli. ''Boundaries of hyperbolic groups.'' Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.</ref> [[ultralimit|asymptotic cone]]s of finitely generated groups (see, e.g.,<ref>T. R. Riley, [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1J-48173YV-2&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=836106f8cf958990dfd27ab111c1286a ''Higher connectedness of asymptotic cones.''] [[Topology (journal)|Topology]], vol. 42 (2003), no. 6, pp. 1289–1352.</ref><ref>L. Kramer, S. Shelah, K. Tent and S. Thomas. [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9F-4CSG3HS-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6ba86760e3a9331e0b330a291a0cf444 ''Asymptotic cones of finitely presented groups.''] Advances in Mathematics, vol. 193 (2005), no. 1, pp. 142–173.</ref>); [[amenability]] of a finitely generated group; being virtually [[Abelian group|abelian]] (that is, having an abelian subgroup of finite index); being virtually [[Nilpotent group|nilpotent]]; being virtually [[Free group|free]]; being [[Finitely presented group|finitely presentable]]; being a finitely presentable group with solvable [[Word problem for groups|Word Problem]]; and others.
:#Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example: [[Gromov's theorem on groups of polynomial growth|Gromov's polynomial growth theorem]]; Stallings' ends theorem; [[Mostow rigidity theorem]].
:#Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space. This direction was initiated by the work of [[Richard Schwartz|Schwartz]] on quasi-isometric rigidity of rank-one lattices<ref>R. E. Richard. ''The quasi-isometry classification of rank one lattices.'' Institut des Hautes Études Scientifiques. Publications Mathématiques. No. 82 (1995), pp. 133-168.</ref> and the work of Farb and Mosher on quasi-isometric rigidity of [[Baumslag-Solitar group]]s.<ref>B. Farb and L. Mosher. ''A rigidity theorem for the solvable Baumslag-Solitar groups. With an appendix by Daryl Cooper.'' [[Inventiones Mathematicae]], vol. 131 (1998), no. 2, pp. 419–451.</ref>
*The theory of [[hyperbolic group|word-hyperbolic]] and [[Relatively hyperbolic group|relatively hyperbolic]] groups. A particularly important development here is the work of [[Zlil Sela|Sela]] in 1990s resulting in the solution of the [[isomorphism problem (groups)|isomorphism problem]] for word-hyperbolic groups.<ref>Z. Sela, [http://www.jstor.org/pss/2118520 ''The isomorphism problem for hyperbolic groups. I.''] [[Annals of Mathematics]] (2), vol. 141 (1995), no. 2, pp. 217–283.</ref> The notion of a relatively hyperbolic groups was originally introduced by Gromov in 1987<ref name="M. Gromov, 1987, pp. 75–263"/> and refined by Farb<ref>B. Farb. ''Relatively hyperbolic groups.'' Geometric and Functional Analysis, vol. 8 (1998), no. 5, pp. 810–840.</ref> and [[Brian Bowditch|Bowditch]],<ref>B. H. Bowditch. ''Treelike structures arising from continua and convergence groups.'' Memoirs American Mathematical Society vol. 139 (1999), no. 662.</ref> in the 1990s. The study of relatively hyperbolic groups gained prominence in 2000s.
*Interactions with mathematical logic and the study of first-order theory of free groups. Particularly important progress occurred on the famous [[Free_group#Tarski.27s_problems|Tarski conjecture]]s, due to the work of Sela<ref>Z.Sela, ''Diophantine geometry over groups and the elementary theory of free and hyperbolic groups.'' Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing, 2002.</ref> as well as of Kharlampovich and Myasnikov.<ref>O. Kharlampovich and A. Myasnikov, Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements of the American Mathematical Society, vol. 4 (1998), pp. 101–108.</ref> The study of [[limit group]]s and introduction of the language and machinery of non-commutative algebraic geometry gained prominence.
*Interactions with computer science, complexity theory and the theory of formal languages. This theme is exemplified by the development of the theory of [[automatic group]]s,<ref>D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. ''Word processing in groups.'' Jones and Bartlett Publishers, Boston, MA, 1992.</ref> a notion that imposes certain geometric and language theoretic conditions on the multiplication operation in a finitely generate group.
*The study of isoperimetric inequalities, Dehn functions and their generalizations for finitely presented group. This includes, in particular, the work of Birget, Ol'shanskii, [[Eliyahu Rips|Rips]] and Sapir<ref>M. Sapir, J.-C. Birget, E. Rips, ''Isoperimetric and isodiametric functions of groups.''
[[Annals of Mathematics]] (2), vol 156 (2002), no. 2, pp. 345–466.</ref><ref>J.-C. Birget, A. Yu. Ol'shanskii, E. Rips, M. Sapir, ''Isoperimetric functions of groups and computational complexity of the word problem.''
[[Annals of Mathematics]] (2), vol 156 (2002), no. 2, pp. 467-518.</ref> essentially characterizing the possible Dehn functions of finitely presented groups, as well as results providing explicit constructions of groups with fractional Dehn functions.<ref>M. R. Bridson, ''Fractional isoperimetric inequalities and subgroup distortion.'' [[Journal of the American Mathematical Society]], vol. 12 (1999), no. 4, pp. 1103–1118.</ref>
*Development of the theory of JSJ-decompositions for finitely generated and finitely presented groups.<ref>E. Rips and Z. Sela, ''Cyclic splittings of finitely presented groups and the canonical JSJ decomposition.'' Annals of Mathematics (2), vol. 146 (1997), no. 1, pp. 53–109.</ref><ref>M. J. Dunwoody and M. E. Sageev. ''JSJ-splittings for finitely presented groups over slender groups.'' [[Inventiones Mathematicae]], vol. 135 (1999), no. 1, pp. 25–44.</ref><ref>P. Scott and G. A. Swarup. ''Regular neighbourhoods and canonical decompositions for groups.'' Electronic Research Announcements of the American Mathematical Society, vol. 8 (2002), pp. 20–28.</ref><ref>B. H. Bowditch. ''Cut points and canonical splittings of hyperbolic groups.'' [[Acta Mathematica]], vol. 180 (1998), no. 2, pp. 145–186.</ref><ref>K. Fujiwara and P. Papasoglu, ''JSJ-decompositions of finitely presented groups and complexes of groups.'' Geometric and Functional Analysis, vol. 16 (2006), no. 1, pp. 70-125.</ref>
*Connections with [[geometric analysis]], the study of [[C*-algebras]] associated with discrete groups and of the theory of free probability. This theme is represented, in particular, by considerable progress on the [[Novikov conjecture]] and the [[Baum–Connes conjecture]] and the development and study of related group-theoretic notions such as topological amenability, asymptotic dimension, uniform embeddability into Hilbert spaces, rapid decay property, and so on (see, for example,<ref>G. Yu. ''The Novikov conjecture for groups with finite asymptotic dimension.'' Annals of Mathematics (2), vol. 147 (1998), no. 2, pp. 325–355.</ref><ref>G. Yu. ''The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space.'' Inventiones Mathematicae, vol 139 (2000), no. 1, pp. 201–240.</ref><ref>I. Mineyev and G. Yu. ''The Baum–Connes conjecture for hyperbolic groups.'' [[Inventiones Mathematicae]], vol. 149 (2002), no. 1, pp. 97–122.</ref>).
*Interactions with the theory of quasiconformal analysis on metric spaces, particularly in relation to [[Cannon's conjecture]] about characterization of hyperbolic groups with [[Gromov boundary]] homeomorphic to the 2-sphere.<ref>M. Bonk and B. Kleiner. ''Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary.'' [[Geometry and Topology]], vol. 9 (2005), pp. 219–246.</ref><ref>M. Bourdon and H. Pajot. ''Quasi-conformal geometry and hyperbolic geometry.'' Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002.</ref><ref>M. Bonk, ''Quasiconformal geometry of fractals.'' International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006.</ref>
*[[Finite subdivision rules]], also in relation to [[Cannon's conjecture]].<ref name="finite">J. W. Cannon, W. J. Floyd, W. R. Parry. ''Finite subdivision rules''. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153&ndash;196.</ref>
 
*Interactions with [[topological dynamics]] in the contexts of studying actions of discrete groups on various compact spaces and group compactifications, particularly [[convergence group]] methods<ref>P. Tukia. ''Generalizations of Fuchsian and Kleinian groups.'' First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 447–461, Progr. Math., 120, Birkhäuser, Basel, 1994.</ref><ref>A. Yaman. ''A topological charactesization of relatively hyperbolic groups.'' Journal für die Reine und Angewandte Mathematik, vol. 566 (2004), pp. 41–89.</ref>
*Development of the theory of group actions on [[real tree|<math>\mathbb R</math>-trees]] (particularly the Rips machine), and its applications.<ref>[[Mladen Bestvina|M. Bestvina]] and M. Feighn. ''Stable actions of groups on real trees.'' [[Inventiones Mathematicae]], vol. 121 (1995), no. 2, pp. 287–321.</ref>
*The study of group actions on [[CAT(0) space]]s and CAT(0) cubical complexes,<ref>M. R. Bridson and [[A. Haefliger]], ''Metric spaces of non-positive curvature.'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999.</ref> motivated by ideas from Alexandrov geometry.
*Interactions with low-dimensional topology and hyperbolic geometry, particularly the study of 3-manifold groups (see, e.g.,<ref>M. Kapovich, ''Hyperbolic manifolds and discrete groups''. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001.</ref>), [[mapping class group]]s of surfaces, [[braid group]]s and [[Kleinian group]]s.
*Introduction of probabilistic methods to study algebraic properties of "random" group theoretic objects (groups, group elements, subgroups, etc.). A particularly important development here is the work of Gromov who used probabilistic methods to prove<ref>M. Gromov. ''Random walk in random groups.'' Geometric and Functional Analysis, vol. 13 (2003), no. 1, pp. 73–146.</ref> the existence of a finitely generated group that is not uniformly embeddable into a Hilbert space. Other notable developments include introduction and study of the notion of [[generic-case complexity]]<ref>I. Kapovich, A. Miasnikov, P. Schupp and V. Shpilrain, ''Generic-case complexity, decision problems in group theory, and random walks.'' [[Journal of Algebra]], vol. 264 (2003), no. 2, pp. 665–694.</ref> for group-theoretic and other mathematical algorithms and algebraic rigidity results for generic groups.<ref>I. Kapovich, P. Schupp, V. Shpilrain, ''Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups.'' [[Pacific Journal of Mathematics]], vol. 223 (2006), no. 1, pp. 113–140.</ref>
*The study of [[automata groups]] and [[iterated monodromy group]]s as groups of automorphisms of infinite rooted trees. In particular, [[Grigorchuk's group]]s of intermediate growth, and their generalizations, appear in this context.<ref>L. Bartholdi, R. I. Grigorchuk and Z. Sunik. ''Branch groups.'' Handbook of algebra, Vol. 3, pp. 989-1112, North-Holland, Amsterdam, 2003.</ref><ref>V. Nekrashevych. ''Self-similar groups.'' Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-3831-8.</ref>
*The study of measure-theoretic properties of group actions on measure spaces, particularly introduction and development of the notions of [[measure equivalence]] and [[orbit equivalence]], as well as measure-theoretic generalizations of Mostow rigidity.<ref>A. Furman, ''Gromov's measure equivalence and rigidity of higher rank lattices.'' [[Annals of Mathematics]] (2), vol. 150 (1999), no. 3, pp. 1059–1081.</ref><ref>N. Monod, Y. Shalom, ''Orbit equivalence rigidity and bounded cohomology.'' [[Annals of Mathematics]] (2), vol. 164 (2006), no. 3, pp. 825–878.</ref>
*The study of unitary representations of discrete groups and [[Kazhdan's property (T)]]<ref>Y. Shalom. ''The algebraization of Kazhdan's property (T).'' International Congress of Mathematicians. Vol. II, pp. 1283–1310, Eur. Math. Soc., Zürich, 2006.</ref>
*The study of ''Out''(''F''<sub>''n''</sub>) (the [[outer automorphism group]] of a [[free group]] of rank ''n'') and of individual automorphisms of free groups. Introduction and the study of Culler-Vogtmann's [[outer space (group theory)|outer space]]<ref>M Culler and [[Karen Vogtmann|K. Vogtmann]]. ''Moduli of graphs and automorphisms of free groups.'' Inventiones Mathematicae, vol. 84 (1986), no. 1, pp. 91–119.</ref> and of the theory of [[train track (mathematics)|train tracks]]<ref>M. Bestvina and M. Handel, ''Train tracks and automorphisms of free groups.'' [[Annals of Mathematics]] (2), vol. 135 (1992), no. 1, pp. 1–51.</ref> for free group automorphisms played a particularly prominent role here.
*Development of [[Bass–Serre theory|Bass&ndash;Serre theory]], particularly various accessibility results<ref>M. J. Dunwoody. ''The accessibility of finitely presented groups.'' [[Inventiones Mathematicae]], vol. 81 (1985), no. 3, pp. 449–457.</ref><ref>M. Bestvina and M. Feighn. ''Bounding the complexity of simplicial group actions on trees.'' [[Inventiones Mathematicae]], vol. 103 (1991), no 3, pp. 449–469 (1991).</ref><ref>Z. Sela, ''Acylindrical accessibility for groups.'' [[Inventiones Mathematicae]], vol. 129 (1997), no. 3, pp. 527–565.</ref> and the theory of tree lattices.<ref>H. Bass and [[Alexander Lubotzky|A. Lubotzky]]. ''Tree lattices. With appendices by Bass, L. Carbone, [[Alexander Lubotzky|Lubotzky]], G. Rosenberg and J. Tits.'' Progress in Mathematics, 176. Birkhäuser Boston, Inc., Boston, MA, 2001. ISBN 0-8176-4120-3.</ref> Generalizations of Bass&ndash;Serre theory such as the theory of complexes of groups.<ref>M. R. Bridson and A. Haefliger, ''Metric spaces of non-positive curvature.'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999. ISBN 3-540-64324-9.</ref>
*The study of [[random walk]]s on groups and related boundary theory, particularly the notion of [[Poisson boundary]] (see, e.g.,<ref>V. A. Kaimanovich, ''The Poisson formula for groups with hyperbolic properties.'' [[Annals of Mathematics]] (2), vol. 152 (2000), no. 3, pp. 659–692.</ref>). The study of [[Amenable group|amenability]] and of groups whose amenability status is still unknown.
*Interactions with finite group theory, particularly progress in the study of [[subgroup growth]].<ref>[[Alexander Lubotzky|A. Lubotzky]] and D. Segal. ''Subgroup growth.'' Progress in Mathematics, 212. Birkhäuser Verlag, Basel, 2003. ISBN 3-7643-6989-2.</ref>
*Studying subgroups and lattices in linear groups, such as <math>SL(n, \mathbb R)</math>, and of other Lie Groups, via geometric methods (e.g. [[Building (mathematics)|buildings]]), [[Algebraic geometry|algebro-geometric]] tools (e.g. [[algebraic group]]s and representation varieties), analytic methods (e.g. unitary representations on [[Hilbert space]]s) and arithmetic methods.
*[[Group cohomology]], using algebraic and topological methods, particularly involving interaction with [[algebraic topology]] and the use of [[Morse theory|morse-theoretic]] ideas in the combinatorial context; large-scale, or coarse (e.g. see <ref>M. Bestvina, M. Kapovich and B. Kleiner. ''Van Kampen's embedding obstruction for discrete groups.'' [[Inventiones Mathematicae]], vol. 150 (2002), no. 2, pp. 219–235.</ref>) homological and cohomological methods.
*Progress on traditional combinatorial group theory topics, such as the [[Burnside problem]],<ref>S. V. Ivanov. ''The free Burnside groups of sufficiently large exponents.'' International Journal of Algebra and Computation, vol. 4 (1994), no. 1–2.</ref><ref>I. G. Lysënok. ''Infinite Burnside groups of even period.'' (Russian) Izvestial Rossiyskoi Akademii Nauk Seriya Matematicheskaya, vol. 60 (1996), no. 3, pp. 3–224; translation in Izvestiya. Mathematics vol. 60 (1996), no. 3, pp. 453–654.</ref> the study of [[Coxeter group]]s and [[Artin group]]s, and so on (the methods used to study these questions currently are often geometric and topological).
 
==Examples==
 
The following examples are often studied in geometric group theory:
<div style="-moz-column-count:2; column-count:2;">
* [[Amenable group]]s
* [[Burnside group|Free Burnside groups]]
* The infinite [[cyclic group]] '''[[integer|Z]]'''
* [[Free group]]s
* [[Free product]]s
* [[Outer automorphism group]]s [[Out(Fn)|Out(F<sub>''n''</sub>)]] (via [[Outer space (group theory)|outer space]])
* [[Hyperbolic group]]s
* [[Mapping class group]]s (automorphisms of surfaces)
* [[Symmetric group]]s
* [[Braid group]]s
* [[Coxeter group]]s
* General [[Artin group]]s
* [[Thompson groups|Thompson's group]] ''F''
* [[CAT(0) group]]s
* [[Arithmetic group]]s
* [[Automatic group]]s
* [[Kleinian group]]s, and other lattices acting on symmetric spaces.
* [[Wallpaper group]]s
* [[Baumslag–Solitar group]]s
* [[Graph of groups|Fundamental groups of graphs of groups]]
* [[Grigorchuk group]]
</div>
 
==See also==
* The [[ping-pong lemma]], a useful way to exhibit a group as a free product
* [[Amenable group]]
* [[Nielsen transformation]]
* [[Tietze transformation]]
 
== References ==
<!-- Please DO NOT use a scroll template or form/table for the reflink, please read warning on the scroll template page [[Template:Scroll box#Warning]]. Thank you -->
{{Reflist|2}}
 
=== Books and monographs ===
 
These texts cover geometric group theory and related topics.
 
*[[B. H. Bowditch]]. ''A course on geometric group theory.'' MSJ Memoirs, 16. Mathematical Society of Japan, Tokyo, 2006. ISBN 4-931469-35-3
*M. R. Bridson and A. Haefliger, ''Metric spaces of non-positive curvature.'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999. ISBN 3-540-64324-9
* Michel Coornaert, Thomas Delzant and  Athanase Papadopoulos, "Géométrie et théorie des groupes : les groupes hyperboliques de Gromov", Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990, x+165 pp.  MR 92f:57003, ISBN 3-540-52977-2
* Michel Coornaert and Athanase Papadopoulos,  Symbolic dynamics and hyperbolic groups.  Lecture Notes in Mathematics. 1539. Springer-Verlag, Berlin, 1993, viii+138 pp.  ISBN 3-540-56499-3
*P. de la Harpe, ''Topics in geometric group theory''. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6
*D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. ''Word processing in groups.'' Jones and Bartlett Publishers, Boston, MA, 1992. ISBN 0-86720-244-0
*M. Gromov, ''Hyperbolic Groups'', in "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp.&nbsp;75–263. ISBN 0-387-96618-8
*M. Gromov, ''Asymptotic invariants of infinite groups'', in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp.&nbsp;1–295
*M. Kapovich, ''Hyperbolic manifolds and discrete groups''. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001
*[[Roger Lyndon|R. Lyndon]] and P. Schupp, ''Combinatorial Group Theory'', Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000. ISBN 3-540-41158-5
*A. Yu. Ol'shanskii, ''Geometry of defining relations in groups.'' Translated from the 1989 Russian original by Yu. A. Bakhturin. Mathematics and its Applications (Soviet Series), 70. Kluwer Academic Publishers Group, Dordrecht, 1991
*J. Roe, ''Lectures on coarse geometry.'' University Lecture Series, 31. American Mathematical Society, Providence, RI, 2003. ISBN 0-8218-3332-4
 
==External links==
*[http://www.math.ucsb.edu/~mccammon/geogrouptheory/ Jon McCammond's Geometric Group Theory Page]
*[http://www.math.mcgill.ca/wise/ggt/cayley.html ''What is Geometric Group Theory?'' By Daniel Wise]
*[http://zebra.sci.ccny.cuny.edu/web/nygtc/problems/ Open Problems in combinatorial and geometric group theory]
*[http://xstructure.inr.ac.ru/x-bin/theme3.py?level=1&index1=-98867 Geometric group theory Theme on arxiv.org]
 
[[Category:Geometric group theory| ]]

Revision as of 13:49, 16 June 2013

The Cayley graph of a free group with two generators. This is a hyperbolic group whose Gromov boundary is a Cantor set. Hyperbolic groups and their boundaries are important topics in geometric group theory, as are Cayley graphs.

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces).

Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric.

Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimensional topology, hyperbolic geometry, algebraic topology, computational group theory and differential geometry. There are also substantial connections with complexity theory, mathematical logic, the study of Lie Groups and their discrete subgroups, dynamical systems, probability theory, K-theory, and other areas of mathematics.

In the introduction to his book Topics in Geometric Group Theory, Pierre de la Harpe wrote: "One of my personal beliefs is that fascination with symmetries and groups is one way of coping with frustrations of life's limitations: we like to recognize symmetries which allow us to recognize more than what we can see. In this sense the study of geometric group theory is a part of culture, and reminds me of several things that Georges de Rham practices on many occasions, such as teaching mathematics, reciting Mallarmé, or greeting a friend" (page 3 in [1]).

History

Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, that describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s,[2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron. Currently combinatorial group theory as an area is largely subsumed by geometric group theory. Moreover, the term "geometric group theory" came to often include studying discrete groups using probabilistic, measure-theoretic, arithmetic, analytic and other approaches that lie outside of the traditional combinatorial group theory arsenal.

In the first half of the 20th century, pioneering work of Dehn, Nielsen, Reidemeister and Schreier, Whitehead, van Kampen, amongst others, introduced some topological and geometric ideas into the study of discrete groups.[3] Other precursors of geometric group theory include small cancellation theory and Bass–Serre theory. Small cancellation theory was introduced by Martin Grindlinger in 1960s[4][5] and further developed by Roger Lyndon and Paul Schupp.[6] It studies van Kampen diagrams, corresponding to finite group presentations, via combinatorial curvature conditions and derives algebraic and algorithmic properties of groups from such analysis. Bass–Serre theory, introduced in the 1977 book of Serre,[7] derives structural algebraic information about groups by studying group actions on simplicial trees. External precursors of geometric group theory include the study of lattices in Lie Groups, especially Mostow rigidity theorem, the study of Kleinian groups, and the progress achieved in low-dimensional topology and hyperbolic geometry in 1970s and early 1980s, spurred, in particular, by Thurston's Geometrization program.

The emergence of geometric group theory as a distinct area of mathematics is usually traced to late 1980s and early 1990s. It was spurred by the 1987 monograph of Gromov "Hyperbolic groups"[8] that introduced the notion of a hyperbolic group (also known as word-hyperbolic or Gromov-hyperbolic or negatively curved group), which captures the idea of a finitely generated group having large-scale negative curvature, and by his subsequent monograph Asymptotic Invariants of Inifinite Groups,[9] that outlined Gromov's program of understanding discrete groups up to quasi-isometry. The work of Gromov had a transformative effect on the study of discrete groups[10][11][12] and the phrase "geometric group theory" started appearing soon afterwards. (see, e.g.,[13]).

Modern themes and developments

Template:Prose

Notable themes and developments in geometric group theory in 1990s and 2000s include:

  • Gromov's program to study quasi-isometric properties of groups.
A particularly influential broad theme in the area is Gromov's program[14] of classifying finitely generated groups according to their large scale geometry. Formally, this means classifying finitely generated groups with their word metric up to quasi-isometry. This program involves:
  1. The study of properties that are invariant under quasi-isometry. Examples of such properties of finitely generated groups include: the growth rate of a finitely generated group; the isoperimetric function or Dehn function of a finitely presented group; the number of ends of a group; hyperbolicity of a group; the homeomorphism type of the Gromov boundary of a hyperbolic group;[15] asymptotic cones of finitely generated groups (see, e.g.,[16][17]); amenability of a finitely generated group; being virtually abelian (that is, having an abelian subgroup of finite index); being virtually nilpotent; being virtually free; being finitely presentable; being a finitely presentable group with solvable Word Problem; and others.
  2. Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example: Gromov's polynomial growth theorem; Stallings' ends theorem; Mostow rigidity theorem.
  3. Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space. This direction was initiated by the work of Schwartz on quasi-isometric rigidity of rank-one lattices[18] and the work of Farb and Mosher on quasi-isometric rigidity of Baumslag-Solitar groups.[19]
  • The theory of word-hyperbolic and relatively hyperbolic groups. A particularly important development here is the work of Sela in 1990s resulting in the solution of the isomorphism problem for word-hyperbolic groups.[20] The notion of a relatively hyperbolic groups was originally introduced by Gromov in 1987[8] and refined by Farb[21] and Bowditch,[22] in the 1990s. The study of relatively hyperbolic groups gained prominence in 2000s.
  • Interactions with mathematical logic and the study of first-order theory of free groups. Particularly important progress occurred on the famous Tarski conjectures, due to the work of Sela[23] as well as of Kharlampovich and Myasnikov.[24] The study of limit groups and introduction of the language and machinery of non-commutative algebraic geometry gained prominence.
  • Interactions with computer science, complexity theory and the theory of formal languages. This theme is exemplified by the development of the theory of automatic groups,[25] a notion that imposes certain geometric and language theoretic conditions on the multiplication operation in a finitely generate group.
  • The study of isoperimetric inequalities, Dehn functions and their generalizations for finitely presented group. This includes, in particular, the work of Birget, Ol'shanskii, Rips and Sapir[26][27] essentially characterizing the possible Dehn functions of finitely presented groups, as well as results providing explicit constructions of groups with fractional Dehn functions.[28]
  • Development of the theory of JSJ-decompositions for finitely generated and finitely presented groups.[29][30][31][32][33]
  • Connections with geometric analysis, the study of C*-algebras associated with discrete groups and of the theory of free probability. This theme is represented, in particular, by considerable progress on the Novikov conjecture and the Baum–Connes conjecture and the development and study of related group-theoretic notions such as topological amenability, asymptotic dimension, uniform embeddability into Hilbert spaces, rapid decay property, and so on (see, for example,[34][35][36]).
  • Interactions with the theory of quasiconformal analysis on metric spaces, particularly in relation to Cannon's conjecture about characterization of hyperbolic groups with Gromov boundary homeomorphic to the 2-sphere.[37][38][39]
  • Finite subdivision rules, also in relation to Cannon's conjecture.[40]

Examples

The following examples are often studied in geometric group theory:

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Books and monographs

These texts cover geometric group theory and related topics.

  • B. H. Bowditch. A course on geometric group theory. MSJ Memoirs, 16. Mathematical Society of Japan, Tokyo, 2006. ISBN 4-931469-35-3
  • M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999. ISBN 3-540-64324-9
  • Michel Coornaert, Thomas Delzant and Athanase Papadopoulos, "Géométrie et théorie des groupes : les groupes hyperboliques de Gromov", Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990, x+165 pp. MR 92f:57003, ISBN 3-540-52977-2
  • Michel Coornaert and Athanase Papadopoulos, Symbolic dynamics and hyperbolic groups. Lecture Notes in Mathematics. 1539. Springer-Verlag, Berlin, 1993, viii+138 pp. ISBN 3-540-56499-3
  • P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6
  • D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992. ISBN 0-86720-244-0
  • M. Gromov, Hyperbolic Groups, in "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263. ISBN 0-387-96618-8
  • M. Gromov, Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295
  • M. Kapovich, Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001
  • R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000. ISBN 3-540-41158-5
  • A. Yu. Ol'shanskii, Geometry of defining relations in groups. Translated from the 1989 Russian original by Yu. A. Bakhturin. Mathematics and its Applications (Soviet Series), 70. Kluwer Academic Publishers Group, Dordrecht, 1991
  • J. Roe, Lectures on coarse geometry. University Lecture Series, 31. American Mathematical Society, Providence, RI, 2003. ISBN 0-8218-3332-4

External links

  1. P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6, ISBN 0-226-31721-8.
  2. Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010
  3. Bruce Chandler and Wilhelm Magnus. The history of combinatorial group theory. A case study in the history of ideas. Studies in the History of Mathematics and Physical Sciences, vo. 9. Springer-Verlag, New York, 1982.
  4. M. Greendlinger, Dehn's algorithm for the word problem. Communications in Pure and Applied Mathematics, vol. 13 (1960), pp. 67–83.
  5. M. Greendlinger, An analogue of a theorem of Magnus. Archiv der Mathematik, vol. 12 (1961), pp. 94–96.
  6. R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000.
  7. J.-P. Serre, Trees. Translated from the 1977 French original by John Stillwell. Springer-Verlag, Berlin-New York, 1980. ISBN 3-540-10103-9.
  8. 8.0 8.1 M. Gromov, Hyperbolic Groups, in "Essays in Group Theory" (G. M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.
  9. M. Gromov, "Asymptotic invariants of infinite groups", in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  10. I. Kapovich and N. Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002. From the Introduction:" In the last fifteen years geometric group theory has enjoyed fast growth and rapidly increasing influence. Much of this progress has been spurred by remarkable work of M. L. Gromov [in Essays in group theory, 75–263, Springer, New York, 1987; in Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, Cambridge Univ. Press, Cambridge, 1993], who has advanced the theory of word-hyperbolic groups (also referred to as Gromov-hyperbolic or negatively curved groups)."
  11. B. H. Bowditch, Hyperbolic 3-manifolds and the geometry of the curve complex. European Congress of Mathematics, pp. 103–115, Eur. Math. Soc., Zürich, 2005. From the Introduction:" Much of this can be viewed in the context of geometric group theory. This subject has seen very rapid growth over the last twenty years or so, though of course, its antecedents can be traced back much earlier. [...] The work of Gromov has been a major driving force in this. Particularly relevant here is his seminal paper on hyperbolic groups [Gr]."
  12. G. Elek. The mathematics of Misha Gromov. Acta Mathematica Hungarica, vol. 113 (2006), no. 3, pp. 171–185. From p. 181: "Gromov's pioneering work on the geometry of discrete metric spaces and his quasi-isometry program became the locomotive of geometric group theory from the early eighties."
  13. Geometric group theory. Vol. 1. Proceedings of the symposium held at Sussex University, Sussex, July 1991. Edited by Graham A. Niblo and Martin A. Roller. London Mathematical Society Lecture Note Series, 181. Cambridge University Press, Cambridge, 1993. ISBN 0-521-43529-3.
  14. M. Gromov, Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  15. I. Kapovich and N. Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.
  16. T. R. Riley, Higher connectedness of asymptotic cones. Topology, vol. 42 (2003), no. 6, pp. 1289–1352.
  17. L. Kramer, S. Shelah, K. Tent and S. Thomas. Asymptotic cones of finitely presented groups. Advances in Mathematics, vol. 193 (2005), no. 1, pp. 142–173.
  18. R. E. Richard. The quasi-isometry classification of rank one lattices. Institut des Hautes Études Scientifiques. Publications Mathématiques. No. 82 (1995), pp. 133-168.
  19. B. Farb and L. Mosher. A rigidity theorem for the solvable Baumslag-Solitar groups. With an appendix by Daryl Cooper. Inventiones Mathematicae, vol. 131 (1998), no. 2, pp. 419–451.
  20. Z. Sela, The isomorphism problem for hyperbolic groups. I. Annals of Mathematics (2), vol. 141 (1995), no. 2, pp. 217–283.
  21. B. Farb. Relatively hyperbolic groups. Geometric and Functional Analysis, vol. 8 (1998), no. 5, pp. 810–840.
  22. B. H. Bowditch. Treelike structures arising from continua and convergence groups. Memoirs American Mathematical Society vol. 139 (1999), no. 662.
  23. Z.Sela, Diophantine geometry over groups and the elementary theory of free and hyperbolic groups. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing, 2002.
  24. O. Kharlampovich and A. Myasnikov, Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements of the American Mathematical Society, vol. 4 (1998), pp. 101–108.
  25. D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
  26. M. Sapir, J.-C. Birget, E. Rips, Isoperimetric and isodiametric functions of groups. Annals of Mathematics (2), vol 156 (2002), no. 2, pp. 345–466.
  27. J.-C. Birget, A. Yu. Ol'shanskii, E. Rips, M. Sapir, Isoperimetric functions of groups and computational complexity of the word problem. Annals of Mathematics (2), vol 156 (2002), no. 2, pp. 467-518.
  28. M. R. Bridson, Fractional isoperimetric inequalities and subgroup distortion. Journal of the American Mathematical Society, vol. 12 (1999), no. 4, pp. 1103–1118.
  29. E. Rips and Z. Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Annals of Mathematics (2), vol. 146 (1997), no. 1, pp. 53–109.
  30. M. J. Dunwoody and M. E. Sageev. JSJ-splittings for finitely presented groups over slender groups. Inventiones Mathematicae, vol. 135 (1999), no. 1, pp. 25–44.
  31. P. Scott and G. A. Swarup. Regular neighbourhoods and canonical decompositions for groups. Electronic Research Announcements of the American Mathematical Society, vol. 8 (2002), pp. 20–28.
  32. B. H. Bowditch. Cut points and canonical splittings of hyperbolic groups. Acta Mathematica, vol. 180 (1998), no. 2, pp. 145–186.
  33. K. Fujiwara and P. Papasoglu, JSJ-decompositions of finitely presented groups and complexes of groups. Geometric and Functional Analysis, vol. 16 (2006), no. 1, pp. 70-125.
  34. G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Annals of Mathematics (2), vol. 147 (1998), no. 2, pp. 325–355.
  35. G. Yu. The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones Mathematicae, vol 139 (2000), no. 1, pp. 201–240.
  36. I. Mineyev and G. Yu. The Baum–Connes conjecture for hyperbolic groups. Inventiones Mathematicae, vol. 149 (2002), no. 1, pp. 97–122.
  37. M. Bonk and B. Kleiner. Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geometry and Topology, vol. 9 (2005), pp. 219–246.
  38. M. Bourdon and H. Pajot. Quasi-conformal geometry and hyperbolic geometry. Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002.
  39. M. Bonk, Quasiconformal geometry of fractals. International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006.
  40. J. W. Cannon, W. J. Floyd, W. R. Parry. Finite subdivision rules. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196.
  41. P. Tukia. Generalizations of Fuchsian and Kleinian groups. First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 447–461, Progr. Math., 120, Birkhäuser, Basel, 1994.
  42. A. Yaman. A topological charactesization of relatively hyperbolic groups. Journal für die Reine und Angewandte Mathematik, vol. 566 (2004), pp. 41–89.
  43. M. Bestvina and M. Feighn. Stable actions of groups on real trees. Inventiones Mathematicae, vol. 121 (1995), no. 2, pp. 287–321.
  44. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999.
  45. M. Kapovich, Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001.
  46. M. Gromov. Random walk in random groups. Geometric and Functional Analysis, vol. 13 (2003), no. 1, pp. 73–146.
  47. I. Kapovich, A. Miasnikov, P. Schupp and V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks. Journal of Algebra, vol. 264 (2003), no. 2, pp. 665–694.
  48. I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups. Pacific Journal of Mathematics, vol. 223 (2006), no. 1, pp. 113–140.
  49. L. Bartholdi, R. I. Grigorchuk and Z. Sunik. Branch groups. Handbook of algebra, Vol. 3, pp. 989-1112, North-Holland, Amsterdam, 2003.
  50. V. Nekrashevych. Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-3831-8.
  51. A. Furman, Gromov's measure equivalence and rigidity of higher rank lattices. Annals of Mathematics (2), vol. 150 (1999), no. 3, pp. 1059–1081.
  52. N. Monod, Y. Shalom, Orbit equivalence rigidity and bounded cohomology. Annals of Mathematics (2), vol. 164 (2006), no. 3, pp. 825–878.
  53. Y. Shalom. The algebraization of Kazhdan's property (T). International Congress of Mathematicians. Vol. II, pp. 1283–1310, Eur. Math. Soc., Zürich, 2006.
  54. M Culler and K. Vogtmann. Moduli of graphs and automorphisms of free groups. Inventiones Mathematicae, vol. 84 (1986), no. 1, pp. 91–119.
  55. M. Bestvina and M. Handel, Train tracks and automorphisms of free groups. Annals of Mathematics (2), vol. 135 (1992), no. 1, pp. 1–51.
  56. M. J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae, vol. 81 (1985), no. 3, pp. 449–457.
  57. M. Bestvina and M. Feighn. Bounding the complexity of simplicial group actions on trees. Inventiones Mathematicae, vol. 103 (1991), no 3, pp. 449–469 (1991).
  58. Z. Sela, Acylindrical accessibility for groups. Inventiones Mathematicae, vol. 129 (1997), no. 3, pp. 527–565.
  59. H. Bass and A. Lubotzky. Tree lattices. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. Progress in Mathematics, 176. Birkhäuser Boston, Inc., Boston, MA, 2001. ISBN 0-8176-4120-3.
  60. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin, 1999. ISBN 3-540-64324-9.
  61. V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties. Annals of Mathematics (2), vol. 152 (2000), no. 3, pp. 659–692.
  62. A. Lubotzky and D. Segal. Subgroup growth. Progress in Mathematics, 212. Birkhäuser Verlag, Basel, 2003. ISBN 3-7643-6989-2.
  63. M. Bestvina, M. Kapovich and B. Kleiner. Van Kampen's embedding obstruction for discrete groups. Inventiones Mathematicae, vol. 150 (2002), no. 2, pp. 219–235.
  64. S. V. Ivanov. The free Burnside groups of sufficiently large exponents. International Journal of Algebra and Computation, vol. 4 (1994), no. 1–2.
  65. I. G. Lysënok. Infinite Burnside groups of even period. (Russian) Izvestial Rossiyskoi Akademii Nauk Seriya Matematicheskaya, vol. 60 (1996), no. 3, pp. 3–224; translation in Izvestiya. Mathematics vol. 60 (1996), no. 3, pp. 453–654.